-
研究了线极化相对论激光驻波场中的电子运动, 分析了偏振面内入射的电子在激光驻波场中的散射 与电子初始位置、能量以及激光强度的关系. 结果表明,电子在驻波场中的散射情况与电子对激光的相对能量γ0/a0密切相关.对于同样的激光强度,电子初始能量存在一个能够发生前向或背向散射的临界值. 光强越大,电子发生前向散射的初始能量临界值越大.用电子相对能量来衡量, 这个临界值大约在1.0-1.25范围内.当相对能量超过该值,电子运动会从背向变为前向散射. 电子在驻波场中的振荡中心和有质动力逆转效应的存在也是有条件的,二者只有电子相对能量γ0/a0在一定取值范围内才可能存在.相对能量越小,电子能发生前向散射的入射驻波面越小, 而低能电子更倾向于从波节透过.在偏振面内入射的电子在高强度驻波场中会发生非弹性散射, 电子与场会发生高能量交换.We investigate the motion of electrons in linear polarization relativistic laser standing wave field. The dependences of scattering electron incident in laser polarization plane on the electron initial position, energy and the laser intensity are analyzed. The results indicate that the interaction between electron scattering and sanding wave has a close relationship with the electron relative energy γ0/a0. The initial energy of electron has a critical value by which the forward and backward scattering can be distinguished from each other. The critical energy needed for electron forward scattering increases by the laser intensity. Measured by electronic relative energy, the critical value is in a about 1.0-1.25 range. For the same initial energy, the extent of electron incident plane leading to the forward scattering reduces when the laser intensity becomes higher. Moreover, electrons with low energy easily tend to pass through the standing wave from node planes. Electron oscillation-center and ponderomotive force reversal effect exist merely when the electron relative energy is in a certain range. The electron initially rest on optical axis. The inelastic scattering in which the energy can be exchanged between the electron and the field is also discussed.
-
Keywords:
- electron scattering /
- the relativistic laser standing wave /
- electron relative energy /
- ponderomotive force reversal effect
[1] Hartemann F V, Fochs S N, Le Sage G P, Luhmann Jr N C, Woodworth J G, Perry M D, Chen Y J, Kerman A K 1995 Phys. Rev. E 51 4833
[2] Yu W, Yu M Y, Ma J X, Sheng Z M, Zhang J, Daido H, Liu S B, Xu Z Z, Li R X 2000 Phys. Rev. E 61 R2220
[3] He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phys. Rev. E 68 046407
[4] Dudnikova G I, Bychenkov V Y, Maksimchuk A, Mourou G, Nees J, Bochkarev S G, Vshivkov V A 2003 Phys. Rev. E 67 026416
[5] He F, Yu W, Lu P X, Yuan X, Liu J R 2004 Acta Phys. Sin. 53 165 (in Chinese) [何峰, 余玮, 陆培祥, 袁孝, 刘晶儒 2004 53 165]
[6] Zhao Z G, Lü B D 2006 Acta Phys. Sin. 55 1798 (in Chinese) [赵志国, 吕百达 2006 55 1798]
[7] Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004
[8] Kapitza P L, Dirac P A M 1933 Proc. Cambridge Philos. Soc. 29 297
[9] Bucksbaum P H, Schumacher D W, Bashkansky M 1988 Phys. Rev. Lett. 61 1182
[10] Li X F, Zhang J T, Xu Z Z, Fu P M, Guo D S, Freeman R R 2004 Phys. Rev. Lett. 92 233603
[11] Pokrovsky A L, Kaplan A E 2005 Phys. Rev. A 72 043401
[12] Pokrovsky A L, Kaplan A E 2005 Phys. Rev. Lett. 95 053601
[13] Macdonald M P, Spalding G C, Dholakia K 2003 Nature 426 421
[14] Ladavac K, Kasza K, Grier D G 2004 Phys. Rev. E 70 010901
[15] Paterson L, Papagiakoumou E, Millne G, Garcés-Chávez V, Tatarkova S A, Sibbett W, Gunn-Moore F J, Bryant P E, Riches A C, Dholakia K 2005 Appl. Phys. Lett. 87 123901
[16] Sun Y Y, Yuan X C, Ong L S, Bu J, Zhu S W, Liu R 2007 Appl. Phys. Lett. 90 031107
[17] Kaplan A E, Pokrovsky A L 2009 Opt. Express 17 006194
[18] Gibbon P 1997 IEEE J. Quantum Electron 33 1915
[19] Zhang Q J, Yu W, Luan S X, Ma G J 2012 Chin. Phys. B 21 013403
-
[1] Hartemann F V, Fochs S N, Le Sage G P, Luhmann Jr N C, Woodworth J G, Perry M D, Chen Y J, Kerman A K 1995 Phys. Rev. E 51 4833
[2] Yu W, Yu M Y, Ma J X, Sheng Z M, Zhang J, Daido H, Liu S B, Xu Z Z, Li R X 2000 Phys. Rev. E 61 R2220
[3] He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phys. Rev. E 68 046407
[4] Dudnikova G I, Bychenkov V Y, Maksimchuk A, Mourou G, Nees J, Bochkarev S G, Vshivkov V A 2003 Phys. Rev. E 67 026416
[5] He F, Yu W, Lu P X, Yuan X, Liu J R 2004 Acta Phys. Sin. 53 165 (in Chinese) [何峰, 余玮, 陆培祥, 袁孝, 刘晶儒 2004 53 165]
[6] Zhao Z G, Lü B D 2006 Acta Phys. Sin. 55 1798 (in Chinese) [赵志国, 吕百达 2006 55 1798]
[7] Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004
[8] Kapitza P L, Dirac P A M 1933 Proc. Cambridge Philos. Soc. 29 297
[9] Bucksbaum P H, Schumacher D W, Bashkansky M 1988 Phys. Rev. Lett. 61 1182
[10] Li X F, Zhang J T, Xu Z Z, Fu P M, Guo D S, Freeman R R 2004 Phys. Rev. Lett. 92 233603
[11] Pokrovsky A L, Kaplan A E 2005 Phys. Rev. A 72 043401
[12] Pokrovsky A L, Kaplan A E 2005 Phys. Rev. Lett. 95 053601
[13] Macdonald M P, Spalding G C, Dholakia K 2003 Nature 426 421
[14] Ladavac K, Kasza K, Grier D G 2004 Phys. Rev. E 70 010901
[15] Paterson L, Papagiakoumou E, Millne G, Garcés-Chávez V, Tatarkova S A, Sibbett W, Gunn-Moore F J, Bryant P E, Riches A C, Dholakia K 2005 Appl. Phys. Lett. 87 123901
[16] Sun Y Y, Yuan X C, Ong L S, Bu J, Zhu S W, Liu R 2007 Appl. Phys. Lett. 90 031107
[17] Kaplan A E, Pokrovsky A L 2009 Opt. Express 17 006194
[18] Gibbon P 1997 IEEE J. Quantum Electron 33 1915
[19] Zhang Q J, Yu W, Luan S X, Ma G J 2012 Chin. Phys. B 21 013403
计量
- 文章访问数: 6170
- PDF下载量: 448
- 被引次数: 0