搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属目标原子晶格结构对其量子雷达散射截面的影响

徐世龙 胡以华 赵楠翔 王阳阳 李乐 郭力仁

引用本文:
Citation:

金属目标原子晶格结构对其量子雷达散射截面的影响

徐世龙, 胡以华, 赵楠翔, 王阳阳, 李乐, 郭力仁

Impact of metal target’s atom lattice structure on its quantum radar cross-section

Xu Shi-Long, Hu Yi-Hua, Zhao Nan-Xiang, Wang Yang-Yang, Li Le, Guo Li-Ren
PDF
导出引用
  • 量子雷达散射截面是描述光量子态照射下目标可见性的重要参数. 本文对量子雷达散射截面的推导进行了扩展, 使其可以应用于非平面凸目标的QRCS计算. 针对面心立方、体心立方以及密排六方三种金属原子晶格所构成的目标的量子雷达散射截面进行了计算, 结果表明不同的原子排列方式下, 目标QRCS主瓣基本不变, 而量子旁瓣在原子排列稀疏的目标中更为明显.
    With the development of quantum radar technology, the interaction of photons and targets has gradually become a new hotspot. Quantum radar cross section (QRCS) is an important parameter fon describing the visibility of the target illuminated by light quantum. #br#According to the conservation of energy and the finite element method, the expression of QRCS derived by Marco Lanzagorta is extended, which can be applied to QRCS calculations of non-planar convex targets. As the surface elements of the target have different incident and scattering angles, the integral equation can give a higher calculation accuracy and is suitable for bistatic or multistatic situations. #br#The distribution pattern of the target’s atoms is varied. Using the interatomic distance as the only parameter to describe the atomic distribution is inaccurate. In this paper the metal atomic lattice is considered. Simulation of the QRCS that is composed of three kinds of metal atomic lattices (face-centered cubic, body-centered cubic and hexagonal close-packed lattices) with different atomic distributions has been made. The hexagonal close-packed lattice with asymmetrical distribution for different azimuth angles is discussed. Simulation result shows that with different arrangement of atoms, the main lobe of the target QRCS is basically unchanged, while the quantum side-lobes of the target with sparsely arranged atoms are much more significant. This reveals a different characteristic of QRCS, and provides theoretic basis for quantum radar and stealth technique researches.
    • 基金项目: 国家自然科学基金(批准号: 61271353)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61271353).
    [1]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (UK: Cambridge University Press) p2

    [2]

    Matthew J. B, Ram M. Narayanan, Marco Lanzagorta 2014 Radar Sensor Technology XVIII, Baltimore Maryland USA, May 05, 2014 p90770T-1

    [3]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 360 1330

    [5]

    Lopaeva E D, I. Berchera R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603

    [6]

    Mouradian S L, Wong F N, Shapiro J H 2013 2013 Conference on Laser and Electro-Optics San Jose California, USA, June 9-14, 2013 p148

    [7]

    Subacuática D C, Lanzagorta M 2014 Journal De Ciencia E Ingenieria 6 1

    [8]

    Jiang K, Lee H, Gerry C C, Dowling J P 2013 Journal of Applied Physics 114 193102

    [9]

    Lanzagorta M, Quantum Radar 2011 Synthesis Lectures on Quantum Computing (USA: Morgan & Claypool Publishers) p1-139

    [10]

    Lanzagorta M 2010 SPIE Photonics Europe, Brussels, April 12-16, 2010 p77270

    [11]

    Liu K, Xiao H T, Fan H Q 2014 Chin. Phys. Lett. 31 034202

    [12]

    Liu K, Xiao H T, Fan H Q, Fu Q 2014 Photonics Technology Letters 26 1146

    [13]

    Wang X W 2010 Basic of Metallography (Beijing: China Machine Press) p28 (in Chinese) [王学武 2010 金属学基础 (北京: 机械工业出版社) 第28页]

    [14]

    Ren S Y 1983 Acta Phys. Sin. 32 664 (in Chinese) [任尚元 1983 32 664]

    [15]

    Zhu H L, Huang Z Q 1987 Acta Phys. Sin. 36 1122 (in Chinese) [朱慧珑, 黄祖洽 1987 36 1122]

    [16]

    Shao J L, He A M, Duan S Q, Wang P, Qin C S 2010 Acta Phys. Sin. 59 4888 (in Chinese) [邵建立, 何安民, 段素青, 王裴, 秦承森 2010 59 4888]

  • [1]

    Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (UK: Cambridge University Press) p2

    [2]

    Matthew J. B, Ram M. Narayanan, Marco Lanzagorta 2014 Radar Sensor Technology XVIII, Baltimore Maryland USA, May 05, 2014 p90770T-1

    [3]

    Tan S H, Erkmen B I, Giovannetti V, Guha S, Lloyd S, Maccone L, Pirandola S, Shapiro J H 2008 Phys. Rev. Lett. 101 253601

    [4]

    Giovannetti V, Lloyd S, Maccone L 2004 Science 360 1330

    [5]

    Lopaeva E D, I. Berchera R, Degiovanni I P, Olivares S, Brida G, Genovese M 2013 Phys. Rev. Lett. 110 153603

    [6]

    Mouradian S L, Wong F N, Shapiro J H 2013 2013 Conference on Laser and Electro-Optics San Jose California, USA, June 9-14, 2013 p148

    [7]

    Subacuática D C, Lanzagorta M 2014 Journal De Ciencia E Ingenieria 6 1

    [8]

    Jiang K, Lee H, Gerry C C, Dowling J P 2013 Journal of Applied Physics 114 193102

    [9]

    Lanzagorta M, Quantum Radar 2011 Synthesis Lectures on Quantum Computing (USA: Morgan & Claypool Publishers) p1-139

    [10]

    Lanzagorta M 2010 SPIE Photonics Europe, Brussels, April 12-16, 2010 p77270

    [11]

    Liu K, Xiao H T, Fan H Q 2014 Chin. Phys. Lett. 31 034202

    [12]

    Liu K, Xiao H T, Fan H Q, Fu Q 2014 Photonics Technology Letters 26 1146

    [13]

    Wang X W 2010 Basic of Metallography (Beijing: China Machine Press) p28 (in Chinese) [王学武 2010 金属学基础 (北京: 机械工业出版社) 第28页]

    [14]

    Ren S Y 1983 Acta Phys. Sin. 32 664 (in Chinese) [任尚元 1983 32 664]

    [15]

    Zhu H L, Huang Z Q 1987 Acta Phys. Sin. 36 1122 (in Chinese) [朱慧珑, 黄祖洽 1987 36 1122]

    [16]

    Shao J L, He A M, Duan S Q, Wang P, Qin C S 2010 Acta Phys. Sin. 59 4888 (in Chinese) [邵建立, 何安民, 段素青, 王裴, 秦承森 2010 59 4888]

  • [1] 李炅远, 孟举, 王克栋. C4-离子的低能电子弹性散射研究:共振态与同分异构.  , 2024, 73(24): . doi: 10.7498/aps.73.20241377
    [2] 张雅婧, 李凡, 雷照康, 王铭浩, 王成会, 莫润阳. 非球形气泡的超声定量检测.  , 2023, 72(3): 034301. doi: 10.7498/aps.72.20222074
    [3] 何兆阳, 雷波, 杨益新. 源致内波引起的声场扰动及其检测方法.  , 2023, 72(14): 144301. doi: 10.7498/aps.72.20230346
    [4] 张雅婧, 王铭浩, 雷照康, 申文洁, 马嫣嫱, 莫润阳. 多层膜结构载磁微泡声散射特性.  , 2022, 71(18): 184302. doi: 10.7498/aps.71.20220847
    [5] 田志富, 吴迪, 胡涛. 圆柱曲面单光子量子雷达散射截面的理论研究.  , 2022, 71(3): 034204. doi: 10.7498/aps.71.20211295
    [6] 宋忠长, 张金虎, 冯文, 杨武夷, 张宇. 齿鲸生物声呐目标探测研究综述.  , 2021, 70(15): 154302. doi: 10.7498/aps.70.20210284
    [7] 田志富, 吴迪, 胡涛. 圆柱曲面单光子量子雷达散射截面的理论研究.  , 2021, (): . doi: 10.7498/aps.70.20211295
    [8] 刘暾东, 李泽鹏, 季清爽, 邵桂芳, 范天娥, 文玉华. 基于改进Basin-Hopping Monte Carlo算法的Fen-Ptm(5 n+m 24)合金团簇结构优化.  , 2017, 66(5): 053601. doi: 10.7498/aps.66.053601
    [9] 邵桂芳, 郑文馨, 涂娜娜, 刘暾东, 文玉华. 高指数晶面Au-Pd纳米合金粒子的稳定结构研究.  , 2015, 64(1): 013602. doi: 10.7498/aps.64.013602
    [10] 底马可, 沈光先, 赵云强, 曾若生, 汪荣凯. Ar-H2(D2, T2)碰撞体系的振转相互作用势及散射截面的理论计算.  , 2015, 64(13): 133101. doi: 10.7498/aps.64.133101
    [11] 韩金钟, 秦臻, 王学雷. ILC上Z玻色子与荷电top-pion对联合产生过程的研究.  , 2012, 61(4): 041201. doi: 10.7498/aps.61.041201
    [12] 胡亚华, 叶丹丹, 祁月盈, 刘晓菊, 刘玲. 质子与Be原子的碰撞电离过程研究.  , 2012, 61(24): 243401. doi: 10.7498/aps.61.243401
    [13] 宫明艳. He原子和BH分子碰撞体系的转动激发能量转移.  , 2011, 60(7): 073401. doi: 10.7498/aps.60.073401
    [14] 黄金书, 罗鹏晖, 鲁公儒. 关于光子对撞机上底夸克对产生的研究.  , 2009, 58(12): 8166-8173. doi: 10.7498/aps.58.8166
    [15] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 3He(4He)与H2分子碰撞的同位素效应研究.  , 2008, 57(6): 3452-3457. doi: 10.7498/aps.57.3452
    [16] 余春日, 宋晓书, 程新路, 杨向东, 申传胜. Ne-HF体系的相互作用势及散射截面的密耦计算.  , 2008, 57(6): 3446-3451. doi: 10.7498/aps.57.3446
    [17] 汪荣凯, 沈光先, 余春日, 杨向东. He-HF(DF,TF)碰撞体系散射截面的理论计算.  , 2008, 57(11): 6932-6938. doi: 10.7498/aps.57.6932
    [18] 沈光先, 汪荣凯, 令狐荣锋, 杨向东. 不同能量的氦原子与同位素分子H2(D2,T2)碰撞分波截面的理论计算.  , 2008, 57(1): 155-159. doi: 10.7498/aps.57.155
    [19] 李应乐, 黄际英, 王明军. Ku波段球体目标系的电磁复合散射研究.  , 2008, 57(12): 7630-7634. doi: 10.7498/aps.57.7630
    [20] 余春日, 汪荣凯, 程新路, 杨向东. He-HF体系势能模型对散射截面影响的理论研究.  , 2007, 56(5): 2577-2584. doi: 10.7498/aps.56.2577
计量
  • 文章访问数:  6868
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-29
  • 修回日期:  2015-02-18
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map