-
We investigate the motion of electrons in linear polarization relativistic laser standing wave field. The dependences of scattering electron incident in laser polarization plane on the electron initial position, energy and the laser intensity are analyzed. The results indicate that the interaction between electron scattering and sanding wave has a close relationship with the electron relative energy γ0/a0. The initial energy of electron has a critical value by which the forward and backward scattering can be distinguished from each other. The critical energy needed for electron forward scattering increases by the laser intensity. Measured by electronic relative energy, the critical value is in a about 1.0-1.25 range. For the same initial energy, the extent of electron incident plane leading to the forward scattering reduces when the laser intensity becomes higher. Moreover, electrons with low energy easily tend to pass through the standing wave from node planes. Electron oscillation-center and ponderomotive force reversal effect exist merely when the electron relative energy is in a certain range. The electron initially rest on optical axis. The inelastic scattering in which the energy can be exchanged between the electron and the field is also discussed.
-
Keywords:
- electron scattering /
- the relativistic laser standing wave /
- electron relative energy /
- ponderomotive force reversal effect
[1] Hartemann F V, Fochs S N, Le Sage G P, Luhmann Jr N C, Woodworth J G, Perry M D, Chen Y J, Kerman A K 1995 Phys. Rev. E 51 4833
[2] Yu W, Yu M Y, Ma J X, Sheng Z M, Zhang J, Daido H, Liu S B, Xu Z Z, Li R X 2000 Phys. Rev. E 61 R2220
[3] He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phys. Rev. E 68 046407
[4] Dudnikova G I, Bychenkov V Y, Maksimchuk A, Mourou G, Nees J, Bochkarev S G, Vshivkov V A 2003 Phys. Rev. E 67 026416
[5] He F, Yu W, Lu P X, Yuan X, Liu J R 2004 Acta Phys. Sin. 53 165 (in Chinese) [何峰, 余玮, 陆培祥, 袁孝, 刘晶儒 2004 53 165]
[6] Zhao Z G, Lü B D 2006 Acta Phys. Sin. 55 1798 (in Chinese) [赵志国, 吕百达 2006 55 1798]
[7] Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004
[8] Kapitza P L, Dirac P A M 1933 Proc. Cambridge Philos. Soc. 29 297
[9] Bucksbaum P H, Schumacher D W, Bashkansky M 1988 Phys. Rev. Lett. 61 1182
[10] Li X F, Zhang J T, Xu Z Z, Fu P M, Guo D S, Freeman R R 2004 Phys. Rev. Lett. 92 233603
[11] Pokrovsky A L, Kaplan A E 2005 Phys. Rev. A 72 043401
[12] Pokrovsky A L, Kaplan A E 2005 Phys. Rev. Lett. 95 053601
[13] Macdonald M P, Spalding G C, Dholakia K 2003 Nature 426 421
[14] Ladavac K, Kasza K, Grier D G 2004 Phys. Rev. E 70 010901
[15] Paterson L, Papagiakoumou E, Millne G, Garcés-Chávez V, Tatarkova S A, Sibbett W, Gunn-Moore F J, Bryant P E, Riches A C, Dholakia K 2005 Appl. Phys. Lett. 87 123901
[16] Sun Y Y, Yuan X C, Ong L S, Bu J, Zhu S W, Liu R 2007 Appl. Phys. Lett. 90 031107
[17] Kaplan A E, Pokrovsky A L 2009 Opt. Express 17 006194
[18] Gibbon P 1997 IEEE J. Quantum Electron 33 1915
[19] Zhang Q J, Yu W, Luan S X, Ma G J 2012 Chin. Phys. B 21 013403
-
[1] Hartemann F V, Fochs S N, Le Sage G P, Luhmann Jr N C, Woodworth J G, Perry M D, Chen Y J, Kerman A K 1995 Phys. Rev. E 51 4833
[2] Yu W, Yu M Y, Ma J X, Sheng Z M, Zhang J, Daido H, Liu S B, Xu Z Z, Li R X 2000 Phys. Rev. E 61 R2220
[3] He F, Yu W, Lu P X, Xu H, Qian L J, Shen B F, Yuan X, Li R X, Xu Z Z 2003 Phys. Rev. E 68 046407
[4] Dudnikova G I, Bychenkov V Y, Maksimchuk A, Mourou G, Nees J, Bochkarev S G, Vshivkov V A 2003 Phys. Rev. E 67 026416
[5] He F, Yu W, Lu P X, Yuan X, Liu J R 2004 Acta Phys. Sin. 53 165 (in Chinese) [何峰, 余玮, 陆培祥, 袁孝, 刘晶儒 2004 53 165]
[6] Zhao Z G, Lü B D 2006 Acta Phys. Sin. 55 1798 (in Chinese) [赵志国, 吕百达 2006 55 1798]
[7] Sheng Z M, Mima K, Sentoku Y, Jovanovic M S, Taguchi T, Zhang J, Meyer-ter-Vehn J 2002 Phys. Rev. Lett. 88 055004
[8] Kapitza P L, Dirac P A M 1933 Proc. Cambridge Philos. Soc. 29 297
[9] Bucksbaum P H, Schumacher D W, Bashkansky M 1988 Phys. Rev. Lett. 61 1182
[10] Li X F, Zhang J T, Xu Z Z, Fu P M, Guo D S, Freeman R R 2004 Phys. Rev. Lett. 92 233603
[11] Pokrovsky A L, Kaplan A E 2005 Phys. Rev. A 72 043401
[12] Pokrovsky A L, Kaplan A E 2005 Phys. Rev. Lett. 95 053601
[13] Macdonald M P, Spalding G C, Dholakia K 2003 Nature 426 421
[14] Ladavac K, Kasza K, Grier D G 2004 Phys. Rev. E 70 010901
[15] Paterson L, Papagiakoumou E, Millne G, Garcés-Chávez V, Tatarkova S A, Sibbett W, Gunn-Moore F J, Bryant P E, Riches A C, Dholakia K 2005 Appl. Phys. Lett. 87 123901
[16] Sun Y Y, Yuan X C, Ong L S, Bu J, Zhu S W, Liu R 2007 Appl. Phys. Lett. 90 031107
[17] Kaplan A E, Pokrovsky A L 2009 Opt. Express 17 006194
[18] Gibbon P 1997 IEEE J. Quantum Electron 33 1915
[19] Zhang Q J, Yu W, Luan S X, Ma G J 2012 Chin. Phys. B 21 013403
Catalog
Metrics
- Abstract views: 6174
- PDF Downloads: 448
- Cited By: 0