Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultra-high vacuum measurement based on 7Li cold atoms manipulation

Cheng Yong-Jun Dong Meng Sun Wen-Jun Wu Xiang-Min Zhang Ya-Fei Jia Wen-Jie Feng Cun Zhang Rui-Fang

Citation:

Ultra-high vacuum measurement based on 7Li cold atoms manipulation

Cheng Yong-Jun, Dong Meng, Sun Wen-Jun, Wu Xiang-Min, Zhang Ya-Fei, Jia Wen-Jie, Feng Cun, Zhang Rui-Fang
cstr: 32037.14.aps.73.20241215
PDF
HTML
Get Citation
  • The redefinition of the International System of Units (SI) promotes the transformation of the vacuum measurement system toward quantization, and the quantization of vacuum parameters is one of the most leading, prospective and subversive research directions in the field of international vacuum metrology, and the quantum vacuum measurement is based on the quantum effect of the microscopic particle system, and the use of optical means and the theory of quantum mechanics to realize the precision measurement of the vacuum parameters. We develop a lithium-cooled atom vacuum measurement apparatus, which mainly consists of a 7Li atom trap system and a continuous expansion vacuum system. In this work, an experimental study of ultrahigh vacuum measurement is carried out by manipulating 7Li atoms and utilizing the loss characteristics of lithium cold atoms in magneto-optical and magnetic traps, and the results show that for the four commonly used gas molecules in vacuum, namely N2, Ar, He, and H2, in the vacuum range of (3×10–8–4×10–5) Pa, the maximum measurement uncertainty is 7.6%–6.0% (k = 2) based on 7Li cold atoms, and the cold atom vacuum measurement results are in good agreement with those of the traditional ionization vacuum gauges, and their relative sensitivities are in good agreement with those of the ionization vacuum gauges, and the maximal deviation of the relative sensitivity factor is less than 8%, which verifies the accuracy and reliability of the cold-atom quantum vacuum measurements. The research results are of great significance in promoting the development of new cross-generation vacuum measurement technology and meeting the needs of space science exploration, ultra-precision measurement and high-end equipment manufacturing.
      Corresponding author: Dong Meng, dongmeng1313@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62371214).
    [1]

    李得天, 成永军, 冯焱, 卢耀文, 赵澜, 徐婕 2009 真空科学与技术学报 29 522Google Scholar

    Li D T, Cheng Y J, Feng Y, Lu Y W, Zhao L, Xu J 2009 Chin. J. Vac. Sci. Technol. 29 522Google Scholar

    [2]

    Li D T, Wang Y J, Zhang H Z, Xi Z H, Li G 2021 Space Sci. Tech. 23 7592858

    [3]

    刘见, 王刚, 胡一鸣, 张腾, 罗子人, 王晴岚, 邵立晶 2016 科学通报 61 1502Google Scholar

    Liu J, Wang G, Hu Y M, Zhang T, Luo Z R, Wang Q L, Shao L J 2016 Chin. Sci. Bull 61 1502Google Scholar

    [4]

    王欲知, 陈旭 2007 真空技术 (北京: 北京航空航天大学出版社) 第6页

    Wang Y Z, Chen X 2007 Vacuum Technology (Beijing: Beihang University Press) p6

    [5]

    Jenninger B, Anderson J, Bernien M, Bundaleski M, Dimitrova H, Granovskij M, Illgen C, Setina J, Jousten K, Kucharski P, Reinhardt C, Scuderi F, Silva R A S, Stöltzel A, Teodoro O M N D, Trzpil-Jurgielewicz B, Wüest M 2021 Vacuum 183 109884Google Scholar

    [6]

    Fedchak J A, Abbott P J, Hendricks J H, Arnold P C, Peacock N T 2018 J. Vac. Sci. Technol. A 36 030802Google Scholar

    [7]

    Prentiss M, Cable A, Bjorkholm J E, Chu S, Raab E L, Pritchard D E 1988 Opt. Lett. 13 452Google Scholar

    [8]

    Scherschligt J, Fedchak J A, Barker D S, Eckel S, Klimov N, Makrides C, Tiesinga E 2017 Metrologia 54 125Google Scholar

    [9]

    Eckel S, Barker D S, Fedchak J A, Klimov N N, Norrgard E, Scherschligt J, Makrides C, Tiesinga E 2018 Metrologia 55 182Google Scholar

    [10]

    Makrides C, Barker D S, Fedchak J A, Eckel S, Tiesinga E 2019 Phys. Rev. A 99 042704Google Scholar

    [11]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2020 Phys. Rev. A 101 012702Google Scholar

    [12]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2022 Phys. Rev. A 105 029902Google Scholar

    [13]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2022 Phys. Rev. A 105 039903Google Scholar

    [14]

    Barker D S, Klimov N N, Tiesinga E, Fedchak J A, Scherschligt J, Eckel S 2021 Measurement: Sensors 18 100229Google Scholar

    [15]

    Barker D S, Acharya B P, Fedchak J A, Klimov N N, Norrgard E B, Scherschligt J, Tiesinga E, Eckel S 2022 Rev. Sci. Instrum. 93 121101Google Scholar

    [16]

    Barker D S, Fedchak J A, Kłos J, Scherschligt J, Sheikh A A, Tiesinga E, Eckel S 2023 AVS Quantum Sci. 5 035001Google Scholar

    [17]

    Kłos J, Tiesinga E 2023 J. Chem. Phys. 158 014308Google Scholar

    [18]

    Booth J L, Shen P, Krems R V, Madison K W 2019 New J. Phys. 21 102001Google Scholar

    [19]

    Shen P, Madison K W, Booth J L 2020 Metrologia 57 025015Google Scholar

    [20]

    Shen P, Madison K W, Booth J L 2021 Metrologia 58 022101Google Scholar

    [21]

    Makhalov V B, Martiyanov K A, Turlapov A V 2016 Metrologia 53 1287Google Scholar

    [22]

    Jousten K 2016 Handbook of Vacuum Technology (Weinheim: Wiley-VCH) p634

    [23]

    Dongen J V, Zhu C, Clement D, Dufour G, Booth J, Madison K 2011 Phys. Rev. A 84 022708Google Scholar

    [24]

    Kawanaka J, Shimizu K, Takuma H 1993 Appl. Phys. B 57 113Google Scholar

    [25]

    张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军 2022 71 094204Google Scholar

    Zhang S Z, Sun W J, Dong M, Wu H B, Li R, Zhang X J, Zhang J Y, Cheng Y J 2022 Acta Phys. Sin. 71 094204Google Scholar

    [26]

    Wu X M, Cheng Y J, Dong M, Sun W J, Zhang S Z, Ma Z Y, Li Y P, Jia W J, Feng T Y, Wu C Y 2023 Vacuum 207 111561Google Scholar

    [27]

    Sun W J, Wu X M, Cheng Y J, Ma Z Y, Jia W J, Zhang Y F, Zhang R F, Wu C Y, Feng C, Luo H G 2024 Vacuum 222 113079Google Scholar

    [28]

    Hajime Yoshida, Kenta Arai 2018 J. Vac. Sci. Technol. A 36 031604Google Scholar

    [29]

    Alper Elkatmis, Rifat Kangi 2019 Measurement 131 269Google Scholar

    [30]

    Yoshida H, Arai K, Kobata T 2014 Vacuum 101 433Google Scholar

    [31]

    Bich W 2014 Metrologia 51 S155Google Scholar

  • 图 1  7Li冷原子真空测量装置实物图

    Figure 1.  Photo of 7Li cooled atomic vacuum measurement device.

    图 2  碰撞体系的损失率系数kloss与阱深U的关系曲线

    Figure 2.  Loss rate coefficient kloss versus trap depth U for the collision system.

    图 3  7Li冷原子真空测量装置原理图

    Figure 3.  Schematic diagram of the 7Li cold atom measurement apparatus.

    图 4  3D MOT真空腔体中7Li冷原子团拍摄照片

    Figure 4.  Photo of 7Li cold atom clusters in 3D MOT vacuum cavity.

    图 5  7Li原子2S基态和2P激发态能级图

    Figure 5.  Energy level diagrams of 2S ground state and 2P excited state of 7Li atom.

    图 6  磁光阱和磁阱中冷原子损失率测量控制时序

    Figure 6.  Timing sequence of the cold atom loss rate measurements in MOT and MT.

    图 7  磁光阱和磁阱中冷原子损失率测量曲线

    Figure 7.  Measurement curves of the loss rate of cold atoms in MOT and MT.

    图 8  损失率Γloss与冷原子测量真空度p的关系曲线

    Figure 8.  Curve of loss rate Γloss versus cold atom measurement vacuum pressure p.

    图 9  分离规灵敏度因子与冷原子测量真空度的关系曲线

    Figure 9.  Curve of the sensitivity factor of the extractor gauge versus the vacuum pressure of the cold atom measurement.

    表 1  ab initio第一性原理实验测量的损失率系数kloss和半经典理论计算值比对

    Table 1.  Comparison of the loss rate coefficient kloss measured by the ab initio first principle experiment and the calculated value of the semiclassical theory.

    碰撞体系 第一性原理测量值
    kloss/(10–15·m3·s–1)
    半经典理论计算值
    kloss/(10–15·m3·s–1)
    7Li-N2 1.36 0.27
    7Li-Ar 1.21 0.059
    7Li-He 1.04 1.29
    7Li-H2 1.56 2.12
    DownLoad: CSV

    表 2  冷原子校准的分离规相对N2的灵敏度因子

    Table 2.  Sensitivity factors of extractor gauge relative to N2 by cold atom calibration.

    气体冷原子校准结果文献[28]文献[29]文献[30]
    N21111
    Ar1.511.411.5291.42
    He0.170.1630.180.179
    H20.370.389
    DownLoad: CSV

    表 3  冷原子真空测量不确定度汇总表

    Table 3.  Summary of cold atom vacuum measurement uncertainties.

    不确定度来源评定方法不确定度分量
    损失率不确定度$ {u_{\text{r}}}({\varGamma _{{\text{loss}}}}) $A类10–8 Pa0.03%@N2; 0.02%@Ar
    10–7 Pa0.07%@N2;0.05%@Ar;0.05%@He;0.04%@H2
    10–6 Pa0.04%@N2; 0.1%@Ar; 0.02%@He;0.04%@H2
    10–5 Pa0.06%@N2;0.04%@Ar;0.07%@He;0.08%@H2
    B类0.6%
    损失率不确定度$ {u_{\text{r}}}({\varGamma _{{\text{MT}}}}) $A类1.6%@N2; 1.7%@Ar; 1.5%@He; 1.5%@H2
    B类0.6%
    损失率不确定度$ {u_{\text{r}}}({\varGamma _{{\text{MOT}}}}) $A类0.05%@N2; 0.07%@Ar; 0.09%@He; 0.06%@H2
    B类0.6%
    损失率系数不确定度$ {u_{\text{r}}}({k_{{\text{tot}}}}) $0.8%@N2; 0.3%@Ar; 2.4%@He; 1.9%@H2
    玻尔兹曼常数不确定度$ {u_{\text{r}}}({k_{\text{B}}}) $忽略不计
    气体分子温度不确定度$ {u_{\text{r}}}(T) $B类0.3%
    本底真空波动不确定度$ {u_{\text{r}}}(w) $A类10–8 Pa2.5%@N2; 2.5%@Ar; 2.0%@He; 2.7%@H2
    10–7 Pa0.5%@N2; 0.7%@Ar; 0.6%@He; 0.8%@H2
    10–6 Pa0.07%@N2;0.07%@Ar;0.08%@He;0.1%@H2
    10–5 Pa忽略不计
    合成标准不确定度10–8 Pa3.3%@N2; 3.2%@Ar; 3.6%@He;3.8%@H2
    10–7 Pa2.2%@N2; 2.2%@Ar; 3.1%@He;2.8%@H2
    10–6 Pa2.1%@N2; 2.0%@Ar; 3.0%@He;2.7%@H2
    10–5 Pa2.1%@N2; 2.0%@Ar;3.0%@He; 2.7%@H2
    DownLoad: CSV
    Baidu
  • [1]

    李得天, 成永军, 冯焱, 卢耀文, 赵澜, 徐婕 2009 真空科学与技术学报 29 522Google Scholar

    Li D T, Cheng Y J, Feng Y, Lu Y W, Zhao L, Xu J 2009 Chin. J. Vac. Sci. Technol. 29 522Google Scholar

    [2]

    Li D T, Wang Y J, Zhang H Z, Xi Z H, Li G 2021 Space Sci. Tech. 23 7592858

    [3]

    刘见, 王刚, 胡一鸣, 张腾, 罗子人, 王晴岚, 邵立晶 2016 科学通报 61 1502Google Scholar

    Liu J, Wang G, Hu Y M, Zhang T, Luo Z R, Wang Q L, Shao L J 2016 Chin. Sci. Bull 61 1502Google Scholar

    [4]

    王欲知, 陈旭 2007 真空技术 (北京: 北京航空航天大学出版社) 第6页

    Wang Y Z, Chen X 2007 Vacuum Technology (Beijing: Beihang University Press) p6

    [5]

    Jenninger B, Anderson J, Bernien M, Bundaleski M, Dimitrova H, Granovskij M, Illgen C, Setina J, Jousten K, Kucharski P, Reinhardt C, Scuderi F, Silva R A S, Stöltzel A, Teodoro O M N D, Trzpil-Jurgielewicz B, Wüest M 2021 Vacuum 183 109884Google Scholar

    [6]

    Fedchak J A, Abbott P J, Hendricks J H, Arnold P C, Peacock N T 2018 J. Vac. Sci. Technol. A 36 030802Google Scholar

    [7]

    Prentiss M, Cable A, Bjorkholm J E, Chu S, Raab E L, Pritchard D E 1988 Opt. Lett. 13 452Google Scholar

    [8]

    Scherschligt J, Fedchak J A, Barker D S, Eckel S, Klimov N, Makrides C, Tiesinga E 2017 Metrologia 54 125Google Scholar

    [9]

    Eckel S, Barker D S, Fedchak J A, Klimov N N, Norrgard E, Scherschligt J, Makrides C, Tiesinga E 2018 Metrologia 55 182Google Scholar

    [10]

    Makrides C, Barker D S, Fedchak J A, Eckel S, Tiesinga E 2019 Phys. Rev. A 99 042704Google Scholar

    [11]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2020 Phys. Rev. A 101 012702Google Scholar

    [12]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2022 Phys. Rev. A 105 029902Google Scholar

    [13]

    Makrides C, Barker D S, Fedchak J A, Scherschligt J, Eckel S, Tiesinga E 2022 Phys. Rev. A 105 039903Google Scholar

    [14]

    Barker D S, Klimov N N, Tiesinga E, Fedchak J A, Scherschligt J, Eckel S 2021 Measurement: Sensors 18 100229Google Scholar

    [15]

    Barker D S, Acharya B P, Fedchak J A, Klimov N N, Norrgard E B, Scherschligt J, Tiesinga E, Eckel S 2022 Rev. Sci. Instrum. 93 121101Google Scholar

    [16]

    Barker D S, Fedchak J A, Kłos J, Scherschligt J, Sheikh A A, Tiesinga E, Eckel S 2023 AVS Quantum Sci. 5 035001Google Scholar

    [17]

    Kłos J, Tiesinga E 2023 J. Chem. Phys. 158 014308Google Scholar

    [18]

    Booth J L, Shen P, Krems R V, Madison K W 2019 New J. Phys. 21 102001Google Scholar

    [19]

    Shen P, Madison K W, Booth J L 2020 Metrologia 57 025015Google Scholar

    [20]

    Shen P, Madison K W, Booth J L 2021 Metrologia 58 022101Google Scholar

    [21]

    Makhalov V B, Martiyanov K A, Turlapov A V 2016 Metrologia 53 1287Google Scholar

    [22]

    Jousten K 2016 Handbook of Vacuum Technology (Weinheim: Wiley-VCH) p634

    [23]

    Dongen J V, Zhu C, Clement D, Dufour G, Booth J, Madison K 2011 Phys. Rev. A 84 022708Google Scholar

    [24]

    Kawanaka J, Shimizu K, Takuma H 1993 Appl. Phys. B 57 113Google Scholar

    [25]

    张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军 2022 71 094204Google Scholar

    Zhang S Z, Sun W J, Dong M, Wu H B, Li R, Zhang X J, Zhang J Y, Cheng Y J 2022 Acta Phys. Sin. 71 094204Google Scholar

    [26]

    Wu X M, Cheng Y J, Dong M, Sun W J, Zhang S Z, Ma Z Y, Li Y P, Jia W J, Feng T Y, Wu C Y 2023 Vacuum 207 111561Google Scholar

    [27]

    Sun W J, Wu X M, Cheng Y J, Ma Z Y, Jia W J, Zhang Y F, Zhang R F, Wu C Y, Feng C, Luo H G 2024 Vacuum 222 113079Google Scholar

    [28]

    Hajime Yoshida, Kenta Arai 2018 J. Vac. Sci. Technol. A 36 031604Google Scholar

    [29]

    Alper Elkatmis, Rifat Kangi 2019 Measurement 131 269Google Scholar

    [30]

    Yoshida H, Arai K, Kobata T 2014 Vacuum 101 433Google Scholar

    [31]

    Bich W 2014 Metrologia 51 S155Google Scholar

  • [1] Liu Yan-Xin, Wang Zhi-Hui, Guan Shi-Jun, Wang Qin-Xia, Zhang Peng-Fei, Li Gang, Zhang Tian-Cai. Atoms loading and cooling for an optical cavity assisted by Λ-enhanced gray-molasses cooling process. Acta Physica Sinica, 2024, 73(11): 113701. doi: 10.7498/aps.73.20240182
    [2] Zhang Su-Zhao, Sun Wen-Jun, Dong Meng, Wu Hai-Bin, Li Rui, Zhang Xue-Jiao, Zhang Jing-Yi, Cheng Yong-Jun. Vacuum pressure measurement based on 6Li cold atoms in a magneto-optical trap. Acta Physica Sinica, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [3] Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhang Kai-Jun, Zhu Dong, Wang Kai-Nan, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang. Absolute gravity measurement based on atomic gravimeter under mooring state of a ship. Acta Physica Sinica, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [4] Wu Bin, Zhou Yin, Cheng Bing, Zhu Dong, Wang Kai-Nan, Zhu Xin-Xin, Chen Pei-Jun, Weng Kan-Xing, Yang Qiu-Hai, Lin Jia-Hong, Zhang Kai-Jun, Wang He-Lin, Lin Qiang. Static measurement of absolute gravity in truck based on atomic gravimeter. Acta Physica Sinica, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [5] He Tian-Chen, Li Ji. Measurement of gravity acceleration by cold atoms in a harmonic trap using Kapitza-Dirac pulses. Acta Physica Sinica, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [6] Wu Bin, Cheng Bing, Fu Zhi-Jie, Zhu Dong, Zhou Yin, Weng Kan-Xing, Wang Xiao-Long, Lin Qiang. Measurement of absolute gravity based on cold atom gravimeter at large tilt angle. Acta Physica Sinica, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [7] Yuan Yuan, Lu Xiao-Gang, Bai Jin-Hai, Li Jian-Jun, Wu Ling-An, Fu Pan-Ming, Wang Ru-Quan, Zuo Zhan-Chun. One-dimensional far-detuned optical lattice realized with a multimode 1064 nm laser. Acta Physica Sinica, 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [8] Xu Run-Dong, Liu Wen-Liang, Wu Ji-Zhou, Ma Jie, Xiao Lian-Tuan, Jia Suo-Tang. Ultracold collisions in a dual species 23Na-133Cs magneto-optical trap. Acta Physica Sinica, 2016, 65(9): 093201. doi: 10.7498/aps.65.093201
    [9] Gou Wei, Liu Kang-Kang, Fu Xiao-Hu, Zhao Ru-Chen, Sun Jian-Fang, Xu Zhen. Optimization of the loading rate of magneto-optical trap for neutral mercury atom. Acta Physica Sinica, 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [10] Yang Wei, Sun Da-Li, Zhou Lin, Wang Jin, Zhan Ming-Sheng. Zeeman slowing and magneto-optically trapping of lithium atoms in atomic interferometry experiments. Acta Physica Sinica, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [11] Wang Jie-Ying, Liu Bei, Diao Wen-Ting, Jin Gang, He Jun, Wang Jun-Min. Optimization of the light-induced-fluorescence signals of single atoms and efficient loading of single atoms into a magneto-optical trap. Acta Physica Sinica, 2014, 63(5): 053202. doi: 10.7498/aps.63.053202
    [12] Yuan Jin-Peng, Ji Zhong-Hua, Yang Yan, Zhang Hong-Shan, Zhao Yan-Ting, Ma Jie, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Experimental investigation on ionized ultracold molecules formed in a magneto-optical trap by time-of-flight mass spectroscopy. Acta Physica Sinica, 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [13] Zhang Peng-Fei, Li Gang, Zhang Yu-Chi, Yang Rong-Can, Guo Yan-Qiang, Wang Jun-Min, Zhang Tian-Cai. Investigation of dynamics of magneto-optical trap loading by light-induced atom desorption. Acta Physica Sinica, 2010, 59(9): 6423-6429. doi: 10.7498/aps.59.6423
    [14] Qiu Ying, He Jun, Wang Yan-Hua, Wang Jing, Zhang Tian-Cai, Wang Jun-Min. Loading and cooling of cesium atoms in 3D optical lattice. Acta Physica Sinica, 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [15] Wang Li-Rong, Ma Jie, Zhang Lin-Jie, Xiao Lian-Tuan, Jia Suo-Tang. Experimental study of ultracold cesium atom photoassociation spectrum using an amplitude modulation technique. Acta Physica Sinica, 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [16] Zhang Peng-Fei, Xu Xin-Ping, Zhang Hai-Chao, Zhou Shan-Yu, Wang Yu-Zhu. UV light-induced atom desorption for magnetic trap in single vacuum chamber. Acta Physica Sinica, 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [17] Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Measurement of the number of cold atoms trapped in cesium magneto-optical trap via probe absorption. Acta Physica Sinica, 2006, 55(7): 3403-3407. doi: 10.7498/aps.55.3403
    [18] Jiang Kai-Jun, Li Ke, Wang Jin, Zhan Ming-Sheng. Dependence of number of trapped atoms on the experimental parameters of Rb magneto-optical trap. Acta Physica Sinica, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [19] Geng Tao, Yan Shu-Bin, Wang Yan-Hua, Yang Hai-Jing, Zhang Tian-Cai, Wang Jun-Min. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of short-distance time-of-flight absorption spectrum. Acta Physica Sinica, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] Xu Zhi-Jun, Cheng Cheng, Yang Huan-Song, Wu Qiang, Xiong Hong-Wei. The groud-state wave function and evolution of the interference pattern for a Bose-condensed gas in 3D optical lattices. Acta Physica Sinica, 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
Metrics
  • Abstract views:  298
  • PDF Downloads:  16
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2024
  • Accepted Date:  30 September 2024
  • Available Online:  23 October 2024
  • Published Online:  20 November 2024

/

返回文章
返回
Baidu
map