搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光致原子解吸附对冷原子磁光阱装载的动力学研究

张鹏飞 李刚 张玉驰 杨榕灿 郭龑强 王军民 张天才

引用本文:
Citation:

光致原子解吸附对冷原子磁光阱装载的动力学研究

张鹏飞, 李刚, 张玉驰, 杨榕灿, 郭龑强, 王军民, 张天才

Investigation of dynamics of magneto-optical trap loading by light-induced atom desorption

Zhang Peng-Fei, Li Gang, Zhang Yu-Chi, Yang Rong-Can, Guo Yan-Qiang, Wang Jun-Min, Zhang Tian-Cai
PDF
导出引用
  • 在获得光致原子解吸附(light-induced atom desorption,LIAD)效应的基础上,从理论和实验方面分析了LIAD对铯原子磁光阱装载的动力学过程的影响,特别是背景原子对磁光阱的影响.通过实验获得了不同光强和照射时间下关闭解吸附光后磁光阱中铯原子的衰减过程,理论模型定量地描述了背景铯原子造成压强的变化及其对最终平衡态下真空度的影响.该研究对中性原子的长时间俘获,有效控制磁光阱中原子的装载过程具有重要意义.
    The dynamics of magneto-optical trap loading by light-induced atom desorption (LIAD) are investigated theoretically and experimentally. The loading of the MOT has been described by a theoretical model. We have paid close attention to the background gases which are essentially important for the ultimate vacuum pressure. The experiment is done based on a glass cell and all the results are well in agreement with the theory. The decay process of the background vacuum pressure caused by the untrapped cesium atoms after shutting off the desorption light is explained quantitatively. The LIAD effect is proved to be an effective tool to control the loading of the MOT and the neutral single atoms in experiment.
    • 基金项目: 国家自然科学基金(批准号:10974125,60808006, 60821004和60978017),国家重点基础研究发展计划(批准号:2006CB921102)资助的课题.
    [1]

    Metcalf H J, Van der Straten P 1999 Laser Cooling and Trapping (Springer, New York)

    [2]

    Anderson M, Ensher J, Matthews M, Wieman C, Cornell E 1995 Science 269 198

    [3]

    Meucci M, Nagel A, Nasyrov K A, Rachini S, Moi L 1999 Phys. Rev. A 60 4693

    [4]

    De Marco B, Jin D S 1999 Science 285 1703

    [5]

    Wang J, He J, Qiu Y, Yang B D, Zhao J Y, Zhang T C, Wang J M 2008 Chin. Phys. B 17 2062

    [6]

    He J, Wang J, Yang B D, Zhao J Y, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3404

    [7]

    Liu T, zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘 涛、张天才、王军民、彭堃墀 2004 53 1346]

    [8]

    Zhang Y C, Li G, Zhang P F, Wang J M, Zhang T C 2009 Front. Phys. China 4 190

    [9]

    Zhang J, Li G, Wang J M, Zhang T C 2008 Acta Sin. Quantum Optica 14 156 (in Chinese) [张 静、李 刚、王军民、张天才 2008 量子光学学报 14 156]

    [10]

    Zhang J, Zhang T C, Wang J M, Peng K C 2007 Chin. Phys. B 16 1295

    [11]

    Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024

    [12]

    Wang J M, Wang J, Yan S B, Gen T, Zhang T C 2009 Rev. Sci. Instrum. 79 123116

    [13]

    Fortagh J, Grossman A, Hnsch T W, Zimmermann C 1998 J. Appl. Phys. 84 6499

    [14]

    Gozzini A, Mango F, Xu J H, Alzetta G, Maccarone F, Bernheim R A 1993 Nuovo Cimento D 15 709

    [15]

    Atutov S N, Biancalana V, Bicchi P, Marinelli C, Mariotti E,

    [16]

    Alexandrov E B, Balabas M V, Budker D, English D, Kimball D F, Li C H, Yashchuk V V 2002 Phys. Rev. A 66 042903

    [17]

    Burchianti A, Bogi A, Marinelli C, Maibohm C, Mariotti E, Moi L 2006 Phys. Rev. Lett. 97 157404

    [18]

    Karaulanov T, Graf M T, English D, Rochester S M, Rosen Y J, Tsigutkin K, Budker D, Alexandrov E B, Balabas M V, Jackson Kimball D F, Narducci F A, Pustelny S, Yashchuk V V 2009 Phys. Rev. A 79 012902

    [19]

    Hatakeyama A, Oe K, Ota K, Hara S, Arai J, Yabuzaki T, Young A R 2000 Phys. Rev. Lett. 84 1407

    [20]

    Anderson B P, Kasevich M A 2001 Phys. Rev. A 63 023404

    [21]

    Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L, Veronesi S 2003 Phys. Rev. A 67 053401

    [22]

    Klempt C, van Zoest T, Henninger T, Topic O, Rasel E, Ertmer W, Arlt J 2006 Phys. Rev. A 73 013410

    [23]

    Zhang P F, Xu X P, Zhang H C, Zhou S Y, Wang Y Z 2007 Acta Phys. Sin. 56 6022 (in Chinese) [张鹏飞、许忻平、张海潮、周善钰、王育竹 2007 56 6022]

    [24]

    Zhang P F, Li G, Zhang Y C, Guo Y Q, Wang J M, Zhang T C 2009 Phys. Rev. A 80 053420

    [25]

    Monroe C, Swann W, Robinson H, Wieman C 1990 Phys. Rev. Lett. 65 1571

    [26]

    Varian Ion Pumps Catalog Varian Inc.

  • [1]

    Metcalf H J, Van der Straten P 1999 Laser Cooling and Trapping (Springer, New York)

    [2]

    Anderson M, Ensher J, Matthews M, Wieman C, Cornell E 1995 Science 269 198

    [3]

    Meucci M, Nagel A, Nasyrov K A, Rachini S, Moi L 1999 Phys. Rev. A 60 4693

    [4]

    De Marco B, Jin D S 1999 Science 285 1703

    [5]

    Wang J, He J, Qiu Y, Yang B D, Zhao J Y, Zhang T C, Wang J M 2008 Chin. Phys. B 17 2062

    [6]

    He J, Wang J, Yang B D, Zhao J Y, Zhang T C, Wang J M 2009 Chin. Phys. B 18 3404

    [7]

    Liu T, zhang T C, Wang J M, Peng K C 2004 Acta Phys. Sin. 53 1346 (in Chinese) [刘 涛、张天才、王军民、彭堃墀 2004 53 1346]

    [8]

    Zhang Y C, Li G, Zhang P F, Wang J M, Zhang T C 2009 Front. Phys. China 4 190

    [9]

    Zhang J, Li G, Wang J M, Zhang T C 2008 Acta Sin. Quantum Optica 14 156 (in Chinese) [张 静、李 刚、王军民、张天才 2008 量子光学学报 14 156]

    [10]

    Zhang J, Zhang T C, Wang J M, Peng K C 2007 Chin. Phys. B 16 1295

    [11]

    Schlosser N, Reymond G, Protsenko I, Grangier P 2001 Nature 411 1024

    [12]

    Wang J M, Wang J, Yan S B, Gen T, Zhang T C 2009 Rev. Sci. Instrum. 79 123116

    [13]

    Fortagh J, Grossman A, Hnsch T W, Zimmermann C 1998 J. Appl. Phys. 84 6499

    [14]

    Gozzini A, Mango F, Xu J H, Alzetta G, Maccarone F, Bernheim R A 1993 Nuovo Cimento D 15 709

    [15]

    Atutov S N, Biancalana V, Bicchi P, Marinelli C, Mariotti E,

    [16]

    Alexandrov E B, Balabas M V, Budker D, English D, Kimball D F, Li C H, Yashchuk V V 2002 Phys. Rev. A 66 042903

    [17]

    Burchianti A, Bogi A, Marinelli C, Maibohm C, Mariotti E, Moi L 2006 Phys. Rev. Lett. 97 157404

    [18]

    Karaulanov T, Graf M T, English D, Rochester S M, Rosen Y J, Tsigutkin K, Budker D, Alexandrov E B, Balabas M V, Jackson Kimball D F, Narducci F A, Pustelny S, Yashchuk V V 2009 Phys. Rev. A 79 012902

    [19]

    Hatakeyama A, Oe K, Ota K, Hara S, Arai J, Yabuzaki T, Young A R 2000 Phys. Rev. Lett. 84 1407

    [20]

    Anderson B P, Kasevich M A 2001 Phys. Rev. A 63 023404

    [21]

    Atutov S N, Calabrese R, Guidi V, Mai B, Rudavets A G, Scansani E, Tomassetti L, Biancalana V, Burchianti A, Marinelli C, Mariotti E, Moi L, Veronesi S 2003 Phys. Rev. A 67 053401

    [22]

    Klempt C, van Zoest T, Henninger T, Topic O, Rasel E, Ertmer W, Arlt J 2006 Phys. Rev. A 73 013410

    [23]

    Zhang P F, Xu X P, Zhang H C, Zhou S Y, Wang Y Z 2007 Acta Phys. Sin. 56 6022 (in Chinese) [张鹏飞、许忻平、张海潮、周善钰、王育竹 2007 56 6022]

    [24]

    Zhang P F, Li G, Zhang Y C, Guo Y Q, Wang J M, Zhang T C 2009 Phys. Rev. A 80 053420

    [25]

    Monroe C, Swann W, Robinson H, Wieman C 1990 Phys. Rev. Lett. 65 1571

    [26]

    Varian Ion Pumps Catalog Varian Inc.

  • [1] 成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳. 基于7Li冷原子操控的超高真空测量.  , 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [2] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量.  , 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [3] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究.  , 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [4] 徐润东, 刘文良, 武寄洲, 马杰, 肖连团, 贾锁堂. 磁光阱中超冷钠-铯原子碰撞的实验研究.  , 2016, 65(9): 093201. doi: 10.7498/aps.65.093201
    [5] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化.  , 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [6] 袁园, 芦小刚, 白金海, 李建军, 吴令安, 傅盘铭, 王如泉, 左战春. 多模1064nm光纤激光器实现一维远失谐光晶格.  , 2016, 65(4): 043701. doi: 10.7498/aps.65.043701
    [7] 文瑞娟, 杜金锦, 李文芳, 李刚, 张天才. 内腔多原子直接俘获的强耦合腔量子力学系统的构建.  , 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [8] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁.  , 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [9] 王杰英, 刘贝, 刁文婷, 靳刚, 何军, 王军民. 磁光阱中单原子荧光信号的优化及单原子的高效装载.  , 2014, 63(5): 053202. doi: 10.7498/aps.63.053202
    [10] 吴长江, 阮军, 陈江, 张辉, 张首刚. 应用于铯原子喷泉钟的二维磁光阱研制.  , 2013, 62(6): 063201. doi: 10.7498/aps.62.063201
    [11] 元晋鹏, 姬中华, 杨艳, 张洪山, 赵延霆, 马杰, 汪丽蓉, 肖连团, 贾锁堂. 飞行时间质谱探测磁光阱中超冷分子离子的实验研究.  , 2012, 61(18): 183301. doi: 10.7498/aps.61.183301
    [12] 高峰, 常宏, 王心亮, 田晓, 张首刚. 锶原子Doppler冷却中再抽运光对原子俘获影响的理论和实验研究.  , 2011, 60(5): 050601. doi: 10.7498/aps.60.050601
    [13] 张一驰, 武寄洲, 马杰, 赵延霆, 汪丽蓉, 肖连团, 贾锁堂. 最优化参数控制提高超冷铯分子振转光谱的信噪比.  , 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [14] 邱 英, 何 军, 王彦华, 王 婧, 张天才, 王军民. 三维光学晶格中铯原子的装载与冷却.  , 2008, 57(10): 6227-6232. doi: 10.7498/aps.57.6227
    [15] 周蜀渝, 徐 震, 周善钰, 王育竹. 以慢原子束方式进行原子转移的双磁光阱系统.  , 2007, 56(1): 165-169. doi: 10.7498/aps.56.165
    [16] 汪丽蓉, 马 杰, 张临杰, 肖连团, 贾锁堂. 基于振幅调制的超冷铯原子高分辨光缔合光谱的实验研究.  , 2007, 56(11): 6373-6377. doi: 10.7498/aps.56.6373
    [17] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用.  , 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [18] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系.  , 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [19] 王彦华, 杨海菁, 张天才, 王军民. 用吸收法对铯原子磁光阱中冷原子数目的测量.  , 2006, 55(7): 3403-3407. doi: 10.7498/aps.55.3403
    [20] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量.  , 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
计量
  • 文章访问数:  9267
  • PDF下载量:  748
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-16
  • 修回日期:  2010-01-06
  • 刊出日期:  2010-09-15

/

返回文章
返回
Baidu
map