-
利用Ginzburg-Landau理论模拟在外磁场作用下超导圆环的涡旋演化, 讨论了外磁场、材料参数以及圆环内外径对涡旋进入超导圆环体以及涡旋达到稳定分布的影响. 研究结果表明: 外磁场越大, 材料参数κ越大, 圆环环身越宽, 则超导圆环体内容纳的涡旋就越多. 当磁场较小时, 涡旋只由内边界进入超导体, 当磁场足够大时, 涡旋则先由外边界, 然后再从内边界进入超导体.
-
关键词:
- 圆环 /
- 涡旋 /
- Ginzburg-Landau理论 /
- 超导
The evolution of vortex configuration for superconducting ring is simulated by the Ginzburg-Landau theory in the presence of an externally applied field. The effects of the applied field, the material parameter, the size of ring on the entrance of vortices into the ring and distributing of steady vortices are discussed. Research results show that the higher the applied field, the bigger the material parameter κ is, and the larger the width of the ring, the bigger the number of the vortices which the ring accommodates. The vortices enter into the ring only from the inner boundary when the applied field is low enough, otherwise the vortices enter into the ring first from the outer boundary and then from the inner boundary.-
Keywords:
- ring /
- vortices /
- Ginzburg-Landau theory /
- superconductivity
[1] Abrikosov A A 1957 Sov.Phys.JETP 5 1174
[2] Blatter G, Feigelman M V, Geshkenbein V B, Larkin A I, Vinokur V M 1995 Rev. Mod. Phys. 66 1125
[3] Brandt E H 1995 Rep. Prog. Phys. 58 1465
[4] Xu J H, Ren Y, Ting C S 1996 Phys. Rev. B 53 R2991
[5] Moshchalkov V, Menghini M, Nishio T, Chen Q H, Silhanek A V, Dao V H, Chibotaru L F, Zhigadlo N D, Karpinski J 2009 Phys. Rev. Lett. 102 117001
[6] Du Q 1994 Appl. Anal. 52 1
[7] Tang Q, Wang S 1995 Physica D 88 139
[8] Adler S, Piran T 1984 Rev. Mod. Phys. 56 1
[9] Kato R, Enomoto Y, Maekawa S 1993 Phys. Rev. B 47 8016
[10] Wang Z, Wang Q 1997 Phys. Rev. B 55 11756
[11] Kim S B, Hu C R, Andrews M J 2004 Phys. Rev. B 69 094521
[12] Wang Z D, Hu C R 1991 Phys. Rev. B 44 11918
[13] Shi L M, Zhang S J, Zhu R Y 2013 Acta Phys. Sin. 62 097401 (in Chinese) [史良马, 张世军, 朱仁义 2013 62 097401]
[14] Barba-Ortega J, Gonzalez J D, Joya M R 2013 J. Phys.: Conference Series 410 012008
[15] Gao J, Yang T, Ma P, Dai Y D 2010 Chin. Phys. B 19 067402
[16] Liu Z H, Wei Y K, Wang D, Zhang C, Ma P, Wang Y 2014 Chin. Phys. B 23 097401
[17] Xie F X, Wang F R, Ma P, Dai Y D, Liu X Y 2003 Acta Phys. Sin. 52 473 (in Chinese) [谢飞翔, 王福仁, 马平, 戴远东, 刘新元 2003 52 473]
[18] Liang F Y, Li H M, Li Y J 2006 Acta Phys. Sin. 55 830 (in Chinese) [梁芳营, 李汉明, 李英骏 2006 55 830]
-
[1] Abrikosov A A 1957 Sov.Phys.JETP 5 1174
[2] Blatter G, Feigelman M V, Geshkenbein V B, Larkin A I, Vinokur V M 1995 Rev. Mod. Phys. 66 1125
[3] Brandt E H 1995 Rep. Prog. Phys. 58 1465
[4] Xu J H, Ren Y, Ting C S 1996 Phys. Rev. B 53 R2991
[5] Moshchalkov V, Menghini M, Nishio T, Chen Q H, Silhanek A V, Dao V H, Chibotaru L F, Zhigadlo N D, Karpinski J 2009 Phys. Rev. Lett. 102 117001
[6] Du Q 1994 Appl. Anal. 52 1
[7] Tang Q, Wang S 1995 Physica D 88 139
[8] Adler S, Piran T 1984 Rev. Mod. Phys. 56 1
[9] Kato R, Enomoto Y, Maekawa S 1993 Phys. Rev. B 47 8016
[10] Wang Z, Wang Q 1997 Phys. Rev. B 55 11756
[11] Kim S B, Hu C R, Andrews M J 2004 Phys. Rev. B 69 094521
[12] Wang Z D, Hu C R 1991 Phys. Rev. B 44 11918
[13] Shi L M, Zhang S J, Zhu R Y 2013 Acta Phys. Sin. 62 097401 (in Chinese) [史良马, 张世军, 朱仁义 2013 62 097401]
[14] Barba-Ortega J, Gonzalez J D, Joya M R 2013 J. Phys.: Conference Series 410 012008
[15] Gao J, Yang T, Ma P, Dai Y D 2010 Chin. Phys. B 19 067402
[16] Liu Z H, Wei Y K, Wang D, Zhang C, Ma P, Wang Y 2014 Chin. Phys. B 23 097401
[17] Xie F X, Wang F R, Ma P, Dai Y D, Liu X Y 2003 Acta Phys. Sin. 52 473 (in Chinese) [谢飞翔, 王福仁, 马平, 戴远东, 刘新元 2003 52 473]
[18] Liang F Y, Li H M, Li Y J 2006 Acta Phys. Sin. 55 830 (in Chinese) [梁芳营, 李汉明, 李英骏 2006 55 830]
计量
- 文章访问数: 5958
- PDF下载量: 452
- 被引次数: 0