搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

扭角双层石墨烯中磁性和手性d + id超导态的量子蒙特卡洛研究

方世超 廖心怡

引用本文:
Citation:

扭角双层石墨烯中磁性和手性d + id超导态的量子蒙特卡洛研究

方世超, 廖心怡

Quantum Monte Carlo study of magnetism and chiral ${\mathrm{d}}+{\mathrm{id}} $-wave superconducivity in twisted bilayer graphene

FANG Shichao, LIAO Xinyi
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 为深入理解扭角双层石墨烯系统中关联态之间的关系和超导配对机理以及扭转角度对超导电性的影响, 本文采用大尺度无偏差的约束路径量子蒙特卡洛方法在构建的扭角双层石墨烯有效二轨道哈伯德模型中进行了系统的数值模拟. 首先, 从电声子耦合的层面, 数值模拟结果显示晶格间近邻吸引库仑相互作用强烈地增强系统主导的手性${\mathrm{d}}+{\mathrm{id}}$超导电子配对对称性, 并且发现布里渊区Γ点附近的反铁磁序也存在同样的增强效应, 这说明反铁磁序是形成手性${\mathrm{d}}+{\mathrm{id}}$超导态的先决条件. 更为重要的是此理论结果表明电声子耦合对调控超导电性具有重要的作用. 其次, 从双层石墨烯扭转角度的层面, 我们讨论了扭转角度对超导电性的影响, 数值模拟结果表明扭转角度在1.08°附近, 随着扭转角度的减小系统主导的手性${\mathrm{d}}+{\mathrm{id}}$超导电子配对对称性以及反铁磁序同样表现出增强的协同效应. 最后, 本文的研究结果为进一步揭示扭角双层石墨烯中的超导机理和提高系统的超导临界转变温度提供了重要的研究方向.
    We employ a large-scale, unbiased constrained-path quantum Monte Carlo method to systematically simulate the effective two-orbital Hubbard model for twisted bilayer graphene in order to gain deeper insight into the relationship between correlated states and the superconducting pairing mechanism in twisted bilayer graphene, as well as the influence of the twist angle on superconductivity. Initially, we investigate the modulation of superconductivity by nearest-neighbor attractive Coulomb interactions, demonstrating that electron-phonon coupling plays a significant role in the system. Our numerical results reveal that the superconducting state is dominated by chiral NN-${\mathrm{d}}+{\mathrm{id}} $ superconducting electron pairing symmetry, and that such nearest-neighbor attractive Coulomb interactions significantly enhance the effective long-range pairing correlation function of chiral NN-${\mathrm{d}}+{\mathrm{id}} $ wave. From this perspective, it is evident that the electron-phonon coupling positively contributes to the superconductivity of the system.Then, we explore how the twist angle affects the superconducting state. The flat-band structure caused by hopping anisotropy reflects the different twist angles of the system. Our results show that as the twist angle deviates downward from 1.08°, the effective pairing correlation function of the chiral NN-${\mathrm{d}}+{\mathrm{id}} $ wave increases substantially. Conversely, as the twist angle exceeds 1.08°, the effective correlation function of the chiral NN-${\mathrm{d}}+{\mathrm{id}} $ wave exhibits a tendency of decline. These results suggest that further reduction of the twist angle may lead to higher superconducting transition temperature in twisted bilayer graphene system.Finally, we analyze how nearest-neighbor attractive Coulomb interactions and flat-band structures influence superconductivity from the standpoint of magnetic properties. The observed enhancement of the spin structure factor near the Γ point in the Brillouin zone indicates that enhanced antiferromagnetic correlations are essential for enhancing the superconducting transition temperature and for stabilizing chiral NN-${\mathrm{d}}+{\mathrm{id}} $ wave. Through these investigations, our numerical findings not only contribute to a more comprehensive understanding of strongly correlated systems such as twisted bilayer graphene, but also provide guidance for identifying twist-angle systems with potentially higher superconducting transition temperatures.
  • 图 1  (a) 扭角双层石墨烯有效两轨道哈伯德模型电子跳跃项示意图. 黑色(红色)点代表子格子A(B), 每个晶格点包含两个轨道. $ t_{1}, t_{1}' $表示最近邻电子跳跃积分, $ t_{2}, t_{2}' $代表第五近邻电子跳跃积分; (b) 扭转角度为1.08°, 晶格尺寸为$ L = 5 $的晶格结构示意图. 黑色和红色子格点表示第一层不等价的碳原子A和碳原子B, 绿色和蓝色表示第二次层不等价的碳原子$ A_{1} $和碳原子$ B_{1} $. 三条黑色的曲线表示周期性结构边长

    Fig. 1.  (a) Schematic diagram illustrating the electron hopping terms of effective to Hubbard obital on the twisted bilayer graphene. The black (red) dots represent sublattice A (B), with each lattice point containing two orbitals. The hopping integrals $ t_{1} $ and $ t_{1}' $ correspond to nearest-neighbor interactions, while $ t_{2} $ and $ t_{2}' $ represent the fifth-nearest-neighbor interactions; (b) Schematic of the lattice structure with a twist angle of 1.08° and lattice size $ L = 5 $. Black and red points correspond to the inequivalent carbon atoms A and B in the first layer, while green and blue points represent the inequivalent atoms $ A_{1} $ and $ B_{1} $ in the second layer. The three black curves denote the periodic boundary lengths of the structure.

    图 2  各种轨道内电子配对形式的示意图 (a) NN-s对称性; (b) NN-$ {\mathrm{d}}+{\mathrm{id}} $对称性; (c) NN-$ {\mathrm{p}}+{\mathrm{ip}} $对称性; (d) NNN-$ {\mathrm{d}}+{\mathrm{id}} $对称性; (e) NNN-$ {\mathrm{p}}+{\mathrm{ip}} $对称性; (f) NNN-f对称性

    Fig. 2.  Schematic diagrams of various intra-orbital electron pairing symmetry (a) NN-s-wave symmetry; (b) NN-$ {\mathrm{d}}+{\mathrm{id}} $-wave symmetry; (c) NN-$ {\mathrm{p}}+{\mathrm{ip}} $-wave symmetry; (d) NNN-$ {\mathrm{d}}+{\mathrm{id}} $-wave symmetry; (e) NNN-${\mathrm{p}}+{\mathrm{ip}} $-wave symmetry; (f) NNN-f-wave symmetry.

    图 3  晶格大小为$ L = 5 $的各种电子配对对称性的配对关联函数$ P_{\alpha}(R) $关于配对距离R的函数曲线 (a) $ U = 2.0,V =0.0, $$ \langle n \rangle = 0.933 $; (b) $ U = 0.0, V = -0.3, \langle n \rangle = 0.933 $; (c) $ U = 2.0, V = 0.0, \langle n \rangle = 0.893 $; (d) $ U = 0.0,V = -0.3,\langle n \rangle =0.893 $

    Fig. 3.  Pairing correlation functions $ P_{\alpha}(R) $ as a function of pairing distance R for various electron pairing symmetries in a lattice of size $ L = 5 $ (a) $ U = 2.0 $, $ V = 0.0 $, $ \langle n \rangle = 0.933 $; (b) $ U = 0.0 $, $ V = -0.3 $, $ \langle n \rangle = 0.933 $; (c) $ U = 2.0 $, $ V = 0.0 $, $ \langle n \rangle = 0.893 $; (d) $ U = 0.0 $, $ V = -0.3 $, $ \langle n \rangle = 0.893 $.

    图 4  无相互作用项时晶格大小为$ L = 5 $的各种电子配对对称性的配对关联函数$ P_{\alpha}(R) $关于配对距离R的函数曲线 (a) $ \langle n \rangle = $$ 0.933 $; (b) $ \langle n \rangle = 0.893 $

    Fig. 4.  Pairing correlation functions $ P_{\alpha}(R) $ as a function of pairing distance R for various electron pairing symmetries in a non-interacting system with lattice size $ L = 5 $ (a) $ \langle n \rangle = 0.933 $; (b) $ \langle n \rangle = 0.893 $.

    图 5  在位库仑相互作用强度$ U = 2.0 $时晶格大小为$ L = 5 $的各种电子配对对称性的平均有效配对关联函数$ \overline{V}_{\alpha}(R\geqslant3) $关于近邻库仑相互作用强度V的函数曲线 (a) $ \langle n \rangle = 0.933 $; (b) $ \langle n \rangle = 0.893 $

    Fig. 5.  Average effective pairing correlation functions $ \overline{V}_{\alpha}(R\geqslant3) $ as a function of nearest-neighbor Coulomb interaction V for various electron pairing symmetries in a system with on-site Coulomb interaction strength $ U = 2.0 $ and lattice size $ L = 5 $ (a) $ \langle n \rangle = 0.933 $; (b) $ \langle n \rangle = 0.893 $.

    图 6  在位库仑相互作用强度$ U = 2.0 $时晶格大小为$ L = 6 $的手性NN-$ {\mathrm{d}}+{\mathrm{id}} $波配对对称性的有效配对关联函数$ {V}_{{\mathrm{d}}+{\mathrm{id}}} $关于长程配对距离R的函数关系 (a) $ \langle n \rangle = 0.954 $; (b) $ \langle n \rangle = 0.926 $

    Fig. 6.  Effective pairing correlation functions $ {V}_{{\mathrm{d}}+{\mathrm{id}}} $ as a function of long-range pairing distance R for the chiral NN-$ {\mathrm{d}}+{\mathrm{id}} $-wave pairing symmetry in a system with on-site Coulomb interaction strength $ U = 2.0 $ and lattice size $ L = 6 $ (a) $ \langle n \rangle = 0.954 $; (b) $ \langle n \rangle = 0.926 $.

    图 7  在位库仑相互作用强度$ U = 2.0 $时晶格大小为$ L = 5 $的自旋结构因子$ S(q) $沿着第一布里渊区高对称线$ \Gamma \to M \to $$ K \to \Gamma $方向的变化曲线 (a) $ \langle n \rangle = 0.933 $; (b) $ \langle n \rangle = 0.893 $. 插图中的紫色线代表第一布里渊区的高对称线, 这里Γ, M, K的坐标分别为$ (0, 0) $, $ (\dfrac{2\pi}{3}, 0) $, $ (\dfrac{2\pi}{3\sqrt{3}}, 0) $

    Fig. 7.  Spin structure factor $ S(q) $ along the high-symmetry lines $ \Gamma \to M \to K \to \Gamma $ in the first Brillouin zone for a system with on-site Coulomb interaction strength $ U = 2.0 $ and lattice size $ L = 5 $: (a) $ \langle n \rangle = 0.933 $; (b) $ \langle n \rangle = 0.893 $. The inset shows the high-symmetry lines in the first Brillouin zone, with the coordinates of Γ, M, and K given by $ (0, 0) $, $ (\dfrac{2\pi}{3}, 0) $, and $ (\dfrac{2\pi}{3\sqrt{3}}, 0) $, respectively. The purple lines in the inset represent the high-symmetry lines.

    图 8  无相互作用的哈伯德模型对应的能带结构和态密度; (a), (c), (e)分别为$ t_{1}' = t_{2}' = 0.15 $, $ t_{1}' = t_{2}' = 0.10 $, $ t_{1}' = t_{2}' = 0.05 $的情况下能带沿着第一布里渊区高对称线方向的演化曲线; (b), (d), (f)分别为$ t_{1}' = t_{2}' = 0.15 $, $ t_{1}' = t_{2}' = 0.10 $, $ t_{1}' = t_{2}' = 0.05 $的情况下状态数关于能量的函数关系, 红色虚线和蓝色虚线分别对应电子填充浓度为$ \langle n \rangle = 0.933 $和$ \langle n \rangle = 0.893 $的费米能级位置

    Fig. 8.  The band structure and density of states (DOS) for the non-interacting Hubbard model are shown as follows: Panels (a), (c), and (e) display the band dispersion along the high-symmetry lines in the first Brillouin zone for $ t_{1}' = t_{2}' = 0.15 $, $ t_{1}' = t_{2}' = 0.10 $, and $ t_{1}' = t_{2}' = 0.05 $, respectively. Panels (b), (d), and (f) show the density of states as a function of energy for the same values of $ t_{1}' = t_{2}' $. The red and blue dashed lines represent the Fermi level positions corresponding to electron fillings of $ \langle n \rangle = 0.933 $ and $ \langle n \rangle = 0.893 $, respectively.

    图 9  在位库仑相互作用强度$ U = 2.0 $及近邻库仑相互作用强度$ V = 0.0 $时晶格大小为$ L = 5 $的各种电子配对对称性的平均有效配对关联函数$ \overline{V}_{\alpha}(R\geqslant3) $关于电子跳跃破缺项$ t_{1, 2}' $的函数曲线 (a) $ \langle n \rangle = 0.933 $; (b) $ \langle n \rangle = 0.893 $

    Fig. 9.  The average effective pairing correlation functions $ \overline{V}{\alpha}(R \geqslant 3) $ as a function of electron hopping anisotropy terms $ t_{1, 2}' $ for various electron pairing symmetries in a system with on-site Coulomb interaction strength $ U = 2.0 $, nearest-neighbor Coulomb interaction strength $ V = 0.0 $, and lattice size $ L = 5 $: (a) $ \langle n \rangle = 0.933 $; (b) $ \langle n \rangle = 0.893 $.

    图 10  平带结构调控下在位库仑相互作用强度$ U = 2.0 $及近邻库仑相互作用强度$ V = 0.0 $时晶格大小为$ L = 6 $的手性NN-$ {\mathrm{d}}+{\mathrm{id}} $波配对对称性有效配对关联函数$ V_{{\mathrm{d}}+{\mathrm{id}}} $关于长程配对距离R的函数曲线 (a) $ \langle n \rangle = 0.954 $; (b) $ \langle n \rangle = 0.926 $

    Fig. 10.  The effective pairing correlation function $ V_{{\mathrm{d}}+{\mathrm{id}}} $ for the chiral NN-$ d+id $-wave pairing symmetry with lattice size $ L = 6 $, under flat band structure modulation, is plotted as a function of the long-range pairing distance R, with an on-site Coulomb interaction strength of $ U = 2.0 $ and nearest-neighbor Coulomb interaction strength of $ V = 0.0 $ (a) $ \langle n \rangle = 0.954 $; (b) $ \langle n \rangle = 0.926 $.

    图 11  在位库仑相互作用强度$ U = 2.0 $及近邻库仑相互作用强度$ V = 0.0 $时晶格大小为$ L = 5 $的平带结构调控下的自旋结构因子$ S(q) $沿着第一布里渊区高对称线$ \Gamma \to M \to K \to \Gamma $方向的变化曲线 (a) $ \langle n \rangle = 0.933 $; (b) $ \langle n \rangle = 0.893 $

    Fig. 11.  Spin structure factor $ S(q) $ along the high-symmetry lines $ \Gamma \to M \to K \to \Gamma $ in the first Brillouin zone for a system with on-site Coulomb interaction strength $ U = 2.0 $, nearest-neighbor Coulomb interaction strength $ V = 0.0 $, and lattice size $ L = 5 $, under flat band structure modulation (a) $ \langle n \rangle = 0.933 $; (b) $ \langle n \rangle = 0.893 $.

    Baidu
  • [1]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [2]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80Google Scholar

    [3]

    Oh M, Nuckolls K P, Wong D, Lee R L, Liu X, Watanabe K, Taniguchi T, Yazdani A 2021 Nature 600 240Google Scholar

    [4]

    Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H, Efetov D K 2019 Nature 574 653Google Scholar

    [5]

    Cao Y, Chowdhury D, Rodan-Legrain D, Rubies-Bigorda O, Watanabe K, Taniguchi T, Senthil T, Jarillo-Herrero P 2020 Phys. Rev. Lett. 124 076801Google Scholar

    [6]

    Jaoui A, Das I, Di Battista G, Díez-Mérida J, Lu X, Watanabe K, Taniguchi T, Ishizuka H, Levitov L, Efetov D K 2022 Nature Physics 18 633Google Scholar

    [7]

    Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L, Young A F 2020 Science 367 900Google Scholar

    [8]

    Tilak N, Lai X, Wu S, Zhang Z, Xu M, Ribeiro R d A, Canfield P C, Andrei E Y 2021 Nature Communications 12 4180Google Scholar

    [9]

    Lisi S, Lu X, Benschop T, de Jong T A, Stepanov P, Duran J R, Margot F, Cucchi I, Cappelli E, Hunter A, Tamai A, Kandyba V, Giampietri A, Barinov A, Jobst J, Stalman V, Leeuwenhoek M, Watanabe K, Taniguchi T, Rademaker L, van der Molen S J, Allan M P, Efetov D K, Baumberger F 2021 Nature Physics 17 189Google Scholar

    [10]

    Haddadi F, Wu Q, Kruchkov A J, Yazyev O V 2020 Nano Letters 20 2410Google Scholar

    [11]

    Cao Y, Rodan-Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo-Herrero P 2021 Science 372 264Google Scholar

    [12]

    Hasegawa Y, Kohmoto M 2013 Phys. Rev. B 88 125426Google Scholar

    [13]

    刘健鹏, 戴希 2020 69 147301Google Scholar

    Liu J P, Dai X 2020 Acta Physica Sinica. 69 147301Google Scholar

    [14]

    Lucignano P, Alfè D, Cataudella V, Ninno D, Cantele G 2019 Phys. Rev. B 99 195419Google Scholar

    [15]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98 045103Google Scholar

    [16]

    Yuan N F Q, Fu L 2018 Phys. Rev. B 98 079901Google Scholar

    [17]

    Po H C, Zou L, Vishwanath A, Senthil T 2018 Phys. Rev. X 8 031089

    [18]

    Kennes D M, Lischner J, Karrasch C 2018 Phys. Rev. B 98 241407Google Scholar

    [19]

    Huang T, Zhang L, Ma T 2019 Science Bulletin 64 310Google Scholar

    [20]

    Guo H, Zhu X, Feng S, Scalettar R T 2018 Phys. Rev. B 97 235453Google Scholar

    [21]

    Gu X, Chen C, Leaw J N, Laksono E, Pereira V M, Vignale G, Adam S 2020 Phys. Rev. B 101 180506Google Scholar

    [22]

    Van Loon S, Sá de Melo C A R 2025 Phys. Rev. B 111 064515Google Scholar

    [23]

    Ray S, Jung J, Das T 2019 Phys. Rev. B 99 134515Google Scholar

    [24]

    Roy B, Juričić V 2019 Phys. Rev. B 99 121407Google Scholar

    [25]

    Peltonen T J, Ojajärvi R, Heikkilä T T 2018 Phys. Rev. B 98 220504Google Scholar

    [26]

    Pahlevanzadeh B, Sahebsara P, Sénéchal D 2021 SciPost Phys. 11 017Google Scholar

    [27]

    Pangburn E, Alvarado M, Awoga O A, Pépin C, Bena C 2024 Phys. Rev. B 110 184515Google Scholar

    [28]

    Wagner G, Kwan Y H, Bultinck N, Simon S H, Parameswaran S A 2024 Phys. Rev. B 110 214517Google Scholar

    [29]

    Wang Y, Kang J, Fernandes R M 2021 Phys. Rev. B 103 024506Google Scholar

    [30]

    Chen C, Nuckolls K P, Ding S, Miao W, Wong D, Oh M, Lee R L, He S, Peng C, Pei D, Li Y, Hao C, Yan H, Xiao H, Gao H, Li Q, Zhang S, Liu J, He L, Watanabe K, Taniguchi T, Jozwiak C, Bostwick A, Rotenberg E, Li C, Han X, Pan D, Liu Z, Dai X, Liu C, Bernevig B A, Wang Y, Yazdani A, Chen Y 2024 Nature 636 342Google Scholar

    [31]

    Lian B, Wang Z, Bernevig B A 2019 Phys. Rev. Lett. 122 257002Google Scholar

    [32]

    Wu F, MacDonald A H, Martin I 2018 Phys. Rev. Lett. 121 257001Google Scholar

    [33]

    Liu C X, Chen Y, Yazdani A, Bernevig B A 2024 Phys. Rev. B 110 045133Google Scholar

    [34]

    Girotto N, Linhart L, Libisch F 2023 Phys. Rev. B 108 155415Google Scholar

    [35]

    Choi Y W, Choi H J 2018 Phys. Rev. B 98 241412Google Scholar

    [36]

    Das Sarma S, Wu F 2020 Annals of Physics 417 168193Google Scholar

    [37]

    Gao S, Zhou J J, Luo Y, Bernardi M 2024 Phys. Rev. Mater. 8 L 05100 1

    [38]

    Nam N N T, Koshino M 2017 Phys. Rev. B 96 075311Google Scholar

    [39]

    Trotter H F 1959 Proceedings of the American Mathematical Society 10 545Google Scholar

    [40]

    Suzuki M 1976 Communications in Mathematical Physics 51 183Google Scholar

    [41]

    Hirsch J E 1983 Phys. Rev. B 28 4059Google Scholar

    [42]

    Zhang S, Carlson J, Gubernatis J E 1997 Phys. Rev. B 55 7464Google Scholar

    [43]

    Shi H, Zhang S 2013 Phys. Rev. B 88 125132Google Scholar

    [44]

    Shi H, Jiménez-Hoyos C A, Rodríguez-Guzmán R, Scuseria G E, Zhang S 2014 Phys. Rev. B 89 125129Google Scholar

    [45]

    Vitali E, Shi H, Qin M, Zhang S 2016 Phys. Rev. B 94 085140Google Scholar

    [46]

    Xu X Y, Wessel S, Meng Z Y 2016 Phys. Rev. B 94 115105Google Scholar

    [47]

    Ying T, Wessel S 2018 Phys. Rev. B 97 075127Google Scholar

    [48]

    Fang S C, Liu G K, Lin H Q, Huang Z B 2019 Phys. Rev. B 100 115135Google Scholar

    [49]

    Fang S C, Zheng X J, Lin H Q, Huang Z B 2020 Journal of Physics: Condensed Matter 33 025601

    [50]

    Chen Z, Wang Y, Rebec S N, Jia T, Hashimoto M, Lu D, Moritz B, Moore R G, Devereaux T P, Shen Z X 2021 Science 373 1235Google Scholar

    [51]

    Wang Y, Chen Z, Shi T, Moritz B, Shen Z X, Devereaux T P 2021 Phys. Rev. Lett. 127 197003Google Scholar

    [52]

    Cheng K, Fang S C, Huang Z B 2024 Phys. Rev. B 109 014519Google Scholar

    [53]

    Damascelli A, Hussain Z, Shen Z X 2003 Rev. Mod. Phys. 75 473Google Scholar

    [54]

    Halboth C J, Metzner W 2000 Phys. Rev. Lett. 85 5162Google Scholar

    [55]

    Headings N S, Hayden S M, Coldea R, Perring T G 2010 Phys. Rev. Lett. 105 247001Google Scholar

    [56]

    Sun Z, Lin H Q 2024 Phys. Rev. B 109 035107Google Scholar

    [57]

    Dai P 2015 Rev. Mod. Phys. 87 855Google Scholar

    [58]

    Johnston D C 2010 Advances in Physics 59 803Google Scholar

    [59]

    Mebratie G, Abera B, Mekuye B, Bekele T 2024 Results in Physics 57 107446Google Scholar

    [60]

    Gong Z, Zou J, Xu G 2024 Phys. Rev. B 110 085128Google Scholar

    [61]

    Tilak N, Lai X, Wu S, Zhang Z, Xu M, Ribeiro R d A, Canfield P C, Andrei E Y 2021 Nature communications 12 4180Google Scholar

    [62]

    Li Q, Zhang H, Wang Y, Chen W, Bao C, Liu Q, Lin T, Zhang S, Zhang H, Watanabe K, Taniguchi T, Avila J, Dudin P, Li Q, Yu P, Duan W, Song Z, Zhou S 2024 Nature Materials 23 1070Google Scholar

    [63]

    Tarnopolsky G, Kruchkov A J, Vishwanath A 2019 Phys. Rev. Lett. 122 106405Google Scholar

    [64]

    Chou Y Z, Tan Y, Wu F, Das Sarma S 2024 Phys. Rev. B 11 0

    [65]

    Yu G, Wang Y, Katsnelson M I, Yuan S 2023 Phys. Rev. B 108 045138Google Scholar

  • [1] 季怡汝, 褚衍邦, 冼乐德, 杨威, 张广宇. 从“魔角”石墨烯到摩尔超晶格量子模拟器.  , doi: 10.7498/aps.70.20210476
    [2] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究.  , doi: 10.7498/aps.69.20200644
    [3] 阴敏, 张敏, 吕瑾, 武海顺. TM@Cu12N12团簇磁性第一性原理研究.  , doi: 10.7498/aps.68.20190737
    [4] 王鑫, 李桦, 董正超, 仲崇贵. 二维应变作用下超导薄膜LiFeAs的磁性和电子性质.  , doi: 10.7498/aps.68.20180957
    [5] 侯清玉, 李勇, 赵春旺. Al掺杂和空位对ZnO磁性影响的第一性原理研究.  , doi: 10.7498/aps.66.067202
    [6] 姚仲瑜, 孙丽, 潘孟美, 孙书娟. 第一性原理研究semi-Heusler合金CoCrTe和CoCrSb的半金属性和磁性.  , doi: 10.7498/aps.65.127501
    [7] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究.  , doi: 10.7498/aps.64.147301
    [8] 万素磊, 何利民, 向俊尤, 王志国, 邢茹, 张雪峰, 鲁毅, 赵建军. 钙钛矿型锰氧化物(La0.8Eu0.2)4/3Sr5/3Mn2O7的磁性和电性研究.  , doi: 10.7498/aps.63.237501
    [9] 何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军. 钙钛矿锰氧化物(La1-xEux)4/3Sr5/3Mn2O7(x=0, 0.15)的磁性和电性研究.  , doi: 10.7498/aps.63.147503
    [10] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究.  , doi: 10.7498/aps.63.087502
    [11] 魏哲, 袁健美, 李顺辉, 廖建, 毛宇亮. 含空位二维六角氮化硼电子和磁性质的密度泛函研究.  , doi: 10.7498/aps.62.203101
    [12] 汪冬冬, 高辉. 三维自组装Eu3+-石墨烯复合材料的制备及其磁性研究.  , doi: 10.7498/aps.62.188102
    [13] 赵昆, 张坤, 王家佳, 于金, 吴三械. Heusler合金Pd2 CrAl四方变形、磁性及弹性常数的第一性原理计算.  , doi: 10.7498/aps.60.127101
    [14] 文黎巍, 王玉梅, 裴慧霞, 丁俊. Sb系half-Heusler合金磁性及电子结构的第一性原理研究.  , doi: 10.7498/aps.60.047110
    [15] 高潭华, 卢道明, 吴顺情, 朱梓忠. Fe原子薄片的磁性:第一性原理计算.  , doi: 10.7498/aps.60.047502
    [16] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质.  , doi: 10.7498/aps.60.047105
    [17] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性.  , doi: 10.7498/aps.59.6443
    [18] 陈珊, 吴青云, 陈志高, 许桂贵, 黄志高. ZnO1-xCx稀磁半导体的磁特性的第一性原理和蒙特卡罗研究.  , doi: 10.7498/aps.58.2011
    [19] 马 荣, 张加宏, 杜锦丽, 刘 甦, 刘 楣. 新超导体MgCNi3的虚晶掺杂研究.  , doi: 10.7498/aps.55.6580
    [20] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究.  , doi: 10.7498/aps.55.4816
计量
  • 文章访问数:  327
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 上网日期:  2025-04-24

/

返回文章
返回
Baidu
map