-
The coupling and competition between various degrees of freedom at the interface of transition metal oxide heterointerfaces greatly enrich their physical properties and expand their relevant application scope. It has been reported that dimensionality is an effective method to regulate the properties of oxide heterostructure. The structure of SCO film exhibits a planar-type-to-chain-type transformation with the change of thickness. In this work, the high-quality SCO/LCMO superlattices are deposited by a pulsed laser deposition system. And the interfacial exchange coupling effect is effectively manipulated by controlling the dimensionality of SCO layer. X-ray absorption spectrum (XAS) measurement shows that the charge transfer occurs at the heterointerface. When the SCO layer is thin, the interfacial superexchange coupling supported by charge transfer generates a weak magnetic moment to pin the ferromagnetic LCMO layer. As the SCO layer thickens, the charge transfer will decrease. Meanwhile, the long-range antiferromagnetic order in thicken SCO layer can interact with LCMO layer, resulting in the exchange bias effect. This experiment confirms the important role of dimensionality in modulating the properties in multifunctional oxide heterostructure.
-
Keywords:
- dimensionality /
- exchange bias effect /
- copper oxide /
- manganese oxide
[1] Chen S R, Zhang Q H, Li X J, Zhao J L, Lin S, Jin Q, Hong H T, Huon A, Charlton T, Li Q, Yan W S, Wang J O, Ge C, Wang C, Wang B T, Fitzsimmons M R, Guo H Z, Gu L, Yin W, Jin K J, Guo E J 2022 Sci. Adv. 8 eabq3981
Google Scholar
[2] Lin S, Zhang Q H, Sang X H, Zhao J L, Cheng S, Huon A, Jin Q, Chen S, Chen S G, Cui W J, Guo H Z, He M, Ge C, Wang C, Wang J O, Fitzsimmons M R, Gu L, Zhu T, Jin K J, Guo E J 2021 Nano Lett. 21 3146
Google Scholar
[3] Yi D, Liu J, Hsu S L, Zhang L P, Choi Y S, Kim J W, Chen Z H, Clarkson J D, Serrao C R, Arenholz E, Ryan P J, Xu H X, Birgeneau R J, Ramesh R 2016 PNAS 113 6397
Google Scholar
[4] Huang K, Wu L, Wang M Y, Swain N, Motapothula M, Luo Y Z, Han K, Chen M F, Ye C, Yang A J, Xu H, Qi D C, N'Diaye A T, Panagopoulos C, Primetzhofer D, Shen L, Sengupta P, Ma J, Feng Z X, Nan C W, Wang X R 2020 Appl. Phys. Rev. 7 011401
Google Scholar
[5] Wu M, Zhang X W, Li X M, Qu K, Sun Y W, Han B, Zhu R X, Gao X Y, Zhang J M, Liu K H, Bai X D, Li X Z, Gao P 2022 Nat. Commun. 13 216
Google Scholar
[6] Grutter A J, Vailionis A, Borchers J A, Kirby B J, Flint C L, He C, Arenholz E, Suzuki Y 2016 Nano Lett. 16 5647
Google Scholar
[7] Ji H H, Liu X, Li Z L, Jiao Y J, Ren G X, Dou J R, Zhou X C, Zhou G W, Chen J S, Xu X H, 2024 J. Alloys Compd. 979 173489
Google Scholar
[8] Shi W X, Zheng J, Li Z, Wang M Q, Zhu Z Z, Zhang J E, Zhang H, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J R 2023 Small 20 2308172
Google Scholar
[9] Liao Z L, Skoropata E, Freeland J W, Guo E J, Desautels R, Gao X, Sohn C, Rastogi A, Ward T Z, Zou T, Charlton T, Fitzsimmons M R, Lee H N 2019 Nat. Commun. 10 589
Google Scholar
[10] Zhou G W, Ji H H, Yan Z, Cai M M, Kang P H, Zhang J, Lu J D, Zhang J X, Chen J S, Xu X H 2022 Sci. Chin. Mater. 65 1902
Google Scholar
[11] Flint C L, Vailionis A, Zhou H, Jang H, Lee J S, Suzuki Y 2017 Phys. Rev. B 96 144438
Google Scholar
[12] Grutter A J, Yang H, Kirby B J, Fitzsimmons M R, Aguiar J A, Browning N D, Jenkins C A, Arenholz E, Mehta V V, Alaan U S, Suzuki Y 2013 Phys. Rev. Lett. 111 087202
Google Scholar
[13] Chandrasena R U, Flint C L, Yang W, Arab A, Nemšák S, Gehlmann M, Özdöl V B, Bisti F, Wijesekara K D, Meyer-Ilse J, Gullikson E, Arenholz E, Ciston J, Schneider C M, Strocov V N, Suzuki Y, Gray A X 2018 Phys. Rev. B 98 155103
Google Scholar
[14] Shi W X, Zhang J, Zhan X Z, Li J L, Li Z, Zheng J, Wang M Q, Zhang J E, Zhang H, Zhu T, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J R 2024 Appl. Phys. Rev. 11 021403
Google Scholar
[15] Zhou G W, Ji H H, Yan Z, Kang P, Li Z, Xu X 2021 Mater. Horiz. 8 2485
Google Scholar
[16] 陈盛如 林珊, 洪海涛, 崔婷, 金桥, 王灿, 金奎娟, 郭尔佳 2023 72 097502
Google Scholar
Chen S R, Lin S, Hong H T, Cui T, Jin Q, Wang C, Jin K J, Guo E J 2023 Acta Phys. Sin. 72 097502
Google Scholar
[17] Li S S, Zhang Q H, Lin S, Sang X H, Need R F, Roldan M A, Cui W J, Hu Z Y, Jin Q, Chen S, Zhao J L, Wang J O, Wang J S, He M, Ge C, Wang C, Lu H B, Wu Z P, Guo H Z, Tong X, Zhu T, Kirby B, Gu L, Jin K J, Guo E J 2021 Adv. Mater. 33 2001324
Google Scholar
[18] Samal D, Tan H Y, Molegraaf H, Kuiper B, Siemons W, Bals S, Verbeeck J, Tendeloo G, Takamura Y, Arenholz E, Jenkins C A, Rijnders G, Koste G 2013 Phys. Revi. Lett. 111 096102
Google Scholar
[19] Smink A E M, Birkhölzer Y A, Dam J V, Roesthuis F J G, Rijnders G, Hilgenkamp H, Koster G 2020 Phys. Rev. Mater. 4 083806
Google Scholar
[20] Zhang Z X, Shao J F, Jin F, Dai K J, Li J Y, Lan D, Hua E, Han Y Y, Wei L, Cheng F, Ge B H, Wang L F, Zhao Y, Wu W B 2022 Nano Lett. 22 7328
Google Scholar
[21] Hasegawa S 2012 Charact. Mater. 97 1925
Google Scholar
[22] Infante I C, Sánchez F, Wojcik M, Jedryka E, Estradé S, Peiró F, Arbiol J, Laukhin V, Espinós J P 2007 Phys. Rev. B 76 224415
Google Scholar
[23] Hadjimichael M, Waelchli A, Mundet B, Mckeown Walker S, De Luca G, Herrero-Martin J, Gibert M, Gariglio S, Triscone J M 2022 APL Mater. 10 101112
Google Scholar
[24] Mikhalev K, Verkhovskii S, Gerashenko A, Mirmelstein A, Bobrovskii V, Kumagai K, Furukawa Y, D'yachkova T, Zainulin Y 2004 Phys. Rev. B 69 132415
Google Scholar
[25] Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M, Stöhr J 2003 Phys. Rev. Lett. 91 017203
Google Scholar
[26] Maniv E, Murphy R A, Haley S C, Doyle S, John C, Maniv A, Ramakrishna S K, Tang Y L, Ercius P, Ramesh R, Reyes A P, Long J R, Analytis J G 2021 Nat. Phys. 17 525
Google Scholar
[27] Zhao X W, Ng S M, Wong L W, Wong H F, Liu Y K, Cheng W F, Mak C L, Zhao J, Leung C W 2022 Appl. Phys. Lett. 121 162406
Google Scholar
[28] Yang N, Castro D D, Aruta C, Mazzoli C, Minola M, Brookes N B, Sala M M, Prellie W, Lebedev O I, Tebano A, Balestrino G 2012 J. Appl. Phys. 112 123901
Google Scholar
[29] Niu W, Fang Y W, Zhang X Q, Weng Y K, Chen Y D, Zhang H, Gan Y L, Yuan X, Zhang S J, Sun J B, Wang Y L, Wei L J, Xu Y B, Wang X F, Liu W Q, Pu Y 2021 Adv. Electron. Mater. 7 2000803
Google Scholar
[30] Zheng J, Shi W X, Li Z, Zhang J, Yang C Y, Zhu Z Z, Wang M Q, Zhang J E, Han F R, Zhang H, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J 2024 ACS Nano 18 9232
Google Scholar
[31] Zhang Z C, Hansmann P 2017 Phys. Rev. X 7 011023
[32] Chen H H, Millis A 2017 J. Phys. Condens. Matter 29 243001
Google Scholar
[33] Han F R, Chen X B, Wang J L, Huang X D, Zhang J E, Song J H, Liu B G, Chen Y S, Bai X D, Hu F X, Shen B G, Sun J R 2021 J. Phys. D: Appl. Phys. 54 185302
Google Scholar
[34] Ji H H, Zhou G W, Wang X, Zhang J, Kang P, Xu X 2021 ACS Appl Mater Interfaces 13 15774
Google Scholar
-
图 1 (a) SCO/LCMO 超晶格沉积顺序示意图; (b) L8S2 超晶格样品的部分 RHEED 衍射振荡. 其中, 黄色代表 SCO 层, 紫色代表 LCMO 层
Figure 1. (a) Schematic diagram of deposition sequence of SCO/LCMO superlattices; (b) a part of RHEED oscillation intensity of L8S2 superlattices. Yellow represents the SCO layer, purple represents the L8S2 layer.
-
[1] Chen S R, Zhang Q H, Li X J, Zhao J L, Lin S, Jin Q, Hong H T, Huon A, Charlton T, Li Q, Yan W S, Wang J O, Ge C, Wang C, Wang B T, Fitzsimmons M R, Guo H Z, Gu L, Yin W, Jin K J, Guo E J 2022 Sci. Adv. 8 eabq3981
Google Scholar
[2] Lin S, Zhang Q H, Sang X H, Zhao J L, Cheng S, Huon A, Jin Q, Chen S, Chen S G, Cui W J, Guo H Z, He M, Ge C, Wang C, Wang J O, Fitzsimmons M R, Gu L, Zhu T, Jin K J, Guo E J 2021 Nano Lett. 21 3146
Google Scholar
[3] Yi D, Liu J, Hsu S L, Zhang L P, Choi Y S, Kim J W, Chen Z H, Clarkson J D, Serrao C R, Arenholz E, Ryan P J, Xu H X, Birgeneau R J, Ramesh R 2016 PNAS 113 6397
Google Scholar
[4] Huang K, Wu L, Wang M Y, Swain N, Motapothula M, Luo Y Z, Han K, Chen M F, Ye C, Yang A J, Xu H, Qi D C, N'Diaye A T, Panagopoulos C, Primetzhofer D, Shen L, Sengupta P, Ma J, Feng Z X, Nan C W, Wang X R 2020 Appl. Phys. Rev. 7 011401
Google Scholar
[5] Wu M, Zhang X W, Li X M, Qu K, Sun Y W, Han B, Zhu R X, Gao X Y, Zhang J M, Liu K H, Bai X D, Li X Z, Gao P 2022 Nat. Commun. 13 216
Google Scholar
[6] Grutter A J, Vailionis A, Borchers J A, Kirby B J, Flint C L, He C, Arenholz E, Suzuki Y 2016 Nano Lett. 16 5647
Google Scholar
[7] Ji H H, Liu X, Li Z L, Jiao Y J, Ren G X, Dou J R, Zhou X C, Zhou G W, Chen J S, Xu X H, 2024 J. Alloys Compd. 979 173489
Google Scholar
[8] Shi W X, Zheng J, Li Z, Wang M Q, Zhu Z Z, Zhang J E, Zhang H, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J R 2023 Small 20 2308172
Google Scholar
[9] Liao Z L, Skoropata E, Freeland J W, Guo E J, Desautels R, Gao X, Sohn C, Rastogi A, Ward T Z, Zou T, Charlton T, Fitzsimmons M R, Lee H N 2019 Nat. Commun. 10 589
Google Scholar
[10] Zhou G W, Ji H H, Yan Z, Cai M M, Kang P H, Zhang J, Lu J D, Zhang J X, Chen J S, Xu X H 2022 Sci. Chin. Mater. 65 1902
Google Scholar
[11] Flint C L, Vailionis A, Zhou H, Jang H, Lee J S, Suzuki Y 2017 Phys. Rev. B 96 144438
Google Scholar
[12] Grutter A J, Yang H, Kirby B J, Fitzsimmons M R, Aguiar J A, Browning N D, Jenkins C A, Arenholz E, Mehta V V, Alaan U S, Suzuki Y 2013 Phys. Rev. Lett. 111 087202
Google Scholar
[13] Chandrasena R U, Flint C L, Yang W, Arab A, Nemšák S, Gehlmann M, Özdöl V B, Bisti F, Wijesekara K D, Meyer-Ilse J, Gullikson E, Arenholz E, Ciston J, Schneider C M, Strocov V N, Suzuki Y, Gray A X 2018 Phys. Rev. B 98 155103
Google Scholar
[14] Shi W X, Zhang J, Zhan X Z, Li J L, Li Z, Zheng J, Wang M Q, Zhang J E, Zhang H, Zhu T, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J R 2024 Appl. Phys. Rev. 11 021403
Google Scholar
[15] Zhou G W, Ji H H, Yan Z, Kang P, Li Z, Xu X 2021 Mater. Horiz. 8 2485
Google Scholar
[16] 陈盛如 林珊, 洪海涛, 崔婷, 金桥, 王灿, 金奎娟, 郭尔佳 2023 72 097502
Google Scholar
Chen S R, Lin S, Hong H T, Cui T, Jin Q, Wang C, Jin K J, Guo E J 2023 Acta Phys. Sin. 72 097502
Google Scholar
[17] Li S S, Zhang Q H, Lin S, Sang X H, Need R F, Roldan M A, Cui W J, Hu Z Y, Jin Q, Chen S, Zhao J L, Wang J O, Wang J S, He M, Ge C, Wang C, Lu H B, Wu Z P, Guo H Z, Tong X, Zhu T, Kirby B, Gu L, Jin K J, Guo E J 2021 Adv. Mater. 33 2001324
Google Scholar
[18] Samal D, Tan H Y, Molegraaf H, Kuiper B, Siemons W, Bals S, Verbeeck J, Tendeloo G, Takamura Y, Arenholz E, Jenkins C A, Rijnders G, Koste G 2013 Phys. Revi. Lett. 111 096102
Google Scholar
[19] Smink A E M, Birkhölzer Y A, Dam J V, Roesthuis F J G, Rijnders G, Hilgenkamp H, Koster G 2020 Phys. Rev. Mater. 4 083806
Google Scholar
[20] Zhang Z X, Shao J F, Jin F, Dai K J, Li J Y, Lan D, Hua E, Han Y Y, Wei L, Cheng F, Ge B H, Wang L F, Zhao Y, Wu W B 2022 Nano Lett. 22 7328
Google Scholar
[21] Hasegawa S 2012 Charact. Mater. 97 1925
Google Scholar
[22] Infante I C, Sánchez F, Wojcik M, Jedryka E, Estradé S, Peiró F, Arbiol J, Laukhin V, Espinós J P 2007 Phys. Rev. B 76 224415
Google Scholar
[23] Hadjimichael M, Waelchli A, Mundet B, Mckeown Walker S, De Luca G, Herrero-Martin J, Gibert M, Gariglio S, Triscone J M 2022 APL Mater. 10 101112
Google Scholar
[24] Mikhalev K, Verkhovskii S, Gerashenko A, Mirmelstein A, Bobrovskii V, Kumagai K, Furukawa Y, D'yachkova T, Zainulin Y 2004 Phys. Rev. B 69 132415
Google Scholar
[25] Ohldag H, Scholl A, Nolting F, Arenholz E, Maat S, Young A T, Carey M, Stöhr J 2003 Phys. Rev. Lett. 91 017203
Google Scholar
[26] Maniv E, Murphy R A, Haley S C, Doyle S, John C, Maniv A, Ramakrishna S K, Tang Y L, Ercius P, Ramesh R, Reyes A P, Long J R, Analytis J G 2021 Nat. Phys. 17 525
Google Scholar
[27] Zhao X W, Ng S M, Wong L W, Wong H F, Liu Y K, Cheng W F, Mak C L, Zhao J, Leung C W 2022 Appl. Phys. Lett. 121 162406
Google Scholar
[28] Yang N, Castro D D, Aruta C, Mazzoli C, Minola M, Brookes N B, Sala M M, Prellie W, Lebedev O I, Tebano A, Balestrino G 2012 J. Appl. Phys. 112 123901
Google Scholar
[29] Niu W, Fang Y W, Zhang X Q, Weng Y K, Chen Y D, Zhang H, Gan Y L, Yuan X, Zhang S J, Sun J B, Wang Y L, Wei L J, Xu Y B, Wang X F, Liu W Q, Pu Y 2021 Adv. Electron. Mater. 7 2000803
Google Scholar
[30] Zheng J, Shi W X, Li Z, Zhang J, Yang C Y, Zhu Z Z, Wang M Q, Zhang J E, Han F R, Zhang H, Chen Y Z, Hu F X, Shen B G, Chen Y S, Sun J 2024 ACS Nano 18 9232
Google Scholar
[31] Zhang Z C, Hansmann P 2017 Phys. Rev. X 7 011023
[32] Chen H H, Millis A 2017 J. Phys. Condens. Matter 29 243001
Google Scholar
[33] Han F R, Chen X B, Wang J L, Huang X D, Zhang J E, Song J H, Liu B G, Chen Y S, Bai X D, Hu F X, Shen B G, Sun J R 2021 J. Phys. D: Appl. Phys. 54 185302
Google Scholar
[34] Ji H H, Zhou G W, Wang X, Zhang J, Kang P, Xu X 2021 ACS Appl Mater Interfaces 13 15774
Google Scholar
-
2024年73卷216102补充材料.pdf
Catalog
Metrics
- Abstract views: 1352
- PDF Downloads: 22
- Cited By: 0