-
Electromagnetically induced negative refraction induced by microwave field driving hyperfine level transition is studied by proposing a quasi-lambda type four-level system. Negative refraction characteristics are observed when hyperfine levels within ground state are driven by a microwave field which interacts with electric dipole moment or magnetic dipole moment at different hyperfine levels. In addition, two optical transitions between ground state and excited state are driven by two coupling fields respectively, and the frequency bandwidth of negative refraction is controlled by the detuning of two coupling fields. It is shown that frequency bandwidth of negative refraction is much narrower under off-resonant coupling field than under the resonant coupling field and there is a significant difference in behavior between positively detuned coupling field and negatively detuned coupling field.
-
Keywords:
- negative refraction /
- microwave field /
- permeability /
- permittivity
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE. Trans. Microwave Theory Tech. 47 2075
[3] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[4] Parimi P V, Lu W T, Vodo P, Srdhar S 2003 Nature 426 404
[5] Paremi P V, LuWT, Vodo P, Sokoloff J, Derov J S, Sridhar S 2004 Phys. Rev. Lett. 92 127401
[6] Moussa R , Foteinopoulou S , Zhang L , Tuttle G, Guven K, Ozbay E, Soukiolis C M 2005 Phys. Rev. B 71 085106
[7] Oktel M Ö, Müstecaplio?glu Ö E 2004 Phys. Rev. A 70 053806
[8] Thommen Q, Mandel P 2006 Phys. Rev. Lett. 96 053601
[9] Zhang H J, Niu Y P, Gong S Q 2007 Phys. Lett. A 363 497
[10] Zhen J, Liu Z D, Zeng F H, Fang H J 2008 Acta Phys. Sin. 57 7658 (in Chinese) [郑军, 刘正东, 曾福华, 方慧娟 2008 57 7658]
[11] Ba N, Gao J W, Fan W, Wang D W, Ma Q R, Wang R, Wu J H 2008 Opt. Comm. 281 5566
[12] Kang H X, Kou J, Su X M, Gao J Y 2009 Acta Opt. Sin. 29 3498 (in Chinese) [康海霞, 寇军, 苏雪梅, 高锦岳 2009 光学学报 29 3498]
[13] Liu C X, Zhang J S, Liu J Y, Jin G 2009 Acta Phys. Sin. 58 5778(in Chinese) [刘春旭, 张继森, 刘俊业, 金光 2009 58 5778]
[14] Zhao S C, Liu Z D, Wu Q X 2010 Opt. Comm. 283 3301
-
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Pendry J B, Holden A J, Robbins D J, Stewart W J 1999 IEEE. Trans. Microwave Theory Tech. 47 2075
[3] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[4] Parimi P V, Lu W T, Vodo P, Srdhar S 2003 Nature 426 404
[5] Paremi P V, LuWT, Vodo P, Sokoloff J, Derov J S, Sridhar S 2004 Phys. Rev. Lett. 92 127401
[6] Moussa R , Foteinopoulou S , Zhang L , Tuttle G, Guven K, Ozbay E, Soukiolis C M 2005 Phys. Rev. B 71 085106
[7] Oktel M Ö, Müstecaplio?glu Ö E 2004 Phys. Rev. A 70 053806
[8] Thommen Q, Mandel P 2006 Phys. Rev. Lett. 96 053601
[9] Zhang H J, Niu Y P, Gong S Q 2007 Phys. Lett. A 363 497
[10] Zhen J, Liu Z D, Zeng F H, Fang H J 2008 Acta Phys. Sin. 57 7658 (in Chinese) [郑军, 刘正东, 曾福华, 方慧娟 2008 57 7658]
[11] Ba N, Gao J W, Fan W, Wang D W, Ma Q R, Wang R, Wu J H 2008 Opt. Comm. 281 5566
[12] Kang H X, Kou J, Su X M, Gao J Y 2009 Acta Opt. Sin. 29 3498 (in Chinese) [康海霞, 寇军, 苏雪梅, 高锦岳 2009 光学学报 29 3498]
[13] Liu C X, Zhang J S, Liu J Y, Jin G 2009 Acta Phys. Sin. 58 5778(in Chinese) [刘春旭, 张继森, 刘俊业, 金光 2009 58 5778]
[14] Zhao S C, Liu Z D, Wu Q X 2010 Opt. Comm. 283 3301
Catalog
Metrics
- Abstract views: 7244
- PDF Downloads: 335
- Cited By: 0