Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ignition mechanism of near α high temperature titanium alloy

Wu Ming-Yu Mi Guang-Bao Li Pei-Jie

Citation:

Ignition mechanism of near α high temperature titanium alloy

Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie
PDF
HTML
Get Citation
  • The risk of titanium fire increases significantly with the development of future aero-engine, however, the burning mechanisms of titanium alloys remain uncertain. Therefore, the ignition behavior and mechanism of near α high-temperature titanium alloy are studied in this work by an integrated experiment method, including laser-oxygen concentration ignition method, infrared temperature measurement and observation of molten metal by high-speed camera. Based on this, the ignition boundary curve is determined and the ignition temperature of the alloy is found to decrease from 1595 to 1527 ℃ with the laser power increasing from 200 to 325 W and oxygen concentration increasing from 21% to 60%. The ignition microstructure is characterized by FIB and TEM to study the evolution of reaction products. Pores are found to form beneath the TiO2 surface layer, which can be attributed to the instablity of TiO. The failure mechanism of protective oxide layer is further analyzed according to the thermal stress caused oxide layer damage model. When the temperature approaches the ignition temperature, which is below the melting point, the high vapor pressure of TiO leads to the formation of porous defects beneath the TiO2 surface, thus accelerating the fracture and failure of the TiO2 layer under thermal stress. It is revealed that critical conditions of temperature and instantaneous temperature change rate are needed to realize ignition. Based on this, an ignition model is further constructed to discuss the relationship among ignition temperature, laser power and oxgyen concentration. According to the experimental data fitting, the reaction activation energy of TA19 alloy during the ignition stage is calculated to be about 280 kJ/mol, and the function for calculating ignition temperature is given as follows: $ 1.2 \times {10^{10}}{{\mathrm{e}}^{\frac{{ - 280000}}{{R{T_{{\text{ig}}}}}}}}{c^{\frac{1}{2}}} + $$ 0.52{P_{\mathrm{L}}} - 315 = 0 $. This provides a theoretical reference for predicting the ignition temperatures of near α high temperature titanium alloy and other types of titanium alloys under complex airflow conditions in aircraft engines.
      Corresponding author: Mi Guang-Bao, guangbao.mi@biam.ac.cn
    • Funds: Project supported by the “Ye Qisun” Science Fund Project of the National Natural Science Foundation of China (Grant No. U2141222) and the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. J2019-VIII-0003-0165).
    [1]

    弭光宝, 谭勇, 陈航, 李培杰, 张学军 2024 航空材料学报 44 15Google Scholar

    Mi G B, Tan Y, Chen H, Li P J, Zhang X J 2024 J. Aeronaut. Mater. 44 15Google Scholar

    [2]

    Cai J M, Mi G B, Gao F, Huang H, Cao J X, Huang X, Cao C X 2016 J. Mater. Eng. 44 1

    [3]

    Leyens C, Kocian K, Hausmann J, Kaysser W A 2003 Aerosp. Sci. Technol. 7 201Google Scholar

    [4]

    Wolf J S, Moyle D D, Pruitt A B, Bader J H 1976 J. Electrochem. Soc. 123 C251

    [5]

    Leyens C, Peters M, Kaysser W A 1996 Mater. Sci. Technol. 15 1326

    [6]

    Mi G B, Huang X, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409Google Scholar

    [7]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Met. Mater. Eng. 28 77

    [8]

    弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 2016 65 056103Google Scholar

    Mi G B, Huang X, Cao J X, Wang B, Cao C X 2016 Acta Phys. Sin. 65 056103Google Scholar

    [9]

    Shao L, Xie G L, Liu X H, Wu Y, Tan Q, Xie L, Xin S W, Hao F, Yu J B, Xue W L, Feng K 2022 Corros. Sci. 194 109957Google Scholar

    [10]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Commun. 16 364Google Scholar

    [11]

    Rozenband V I, Vaganova N I 1992 Combust. Flame 88 113Google Scholar

    [12]

    弭光宝, 黄旭, 曹京霞, 曹春晓 2012 航空材料学报 32 25Google Scholar

    Mi G B, Huang X, Cao J X, Cao C X 2012 J. Aeronaut. Mater. 32 25Google Scholar

    [13]

    Shafirovich E, Teoh S K, Varma A 2008 Combust. Flame 152 262Google Scholar

    [14]

    吴明宇, 弭光宝, 李培杰, 黄旭 2023 72 166102Google Scholar

    Wu M Y, Mi G B, Li P J, Huang X 2023 Acta Phys. Sin. 72 166102Google Scholar

    [15]

    梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓 2020 65 216101Google Scholar

    Liang X Y, Mi G B, Li P J, Huang X, Cao C X 2020 Acta Phys. Sin. 65 216101Google Scholar

    [16]

    Shao L, Xie G L, Liu X H, Wu Y, Yu J B, Feng K, Xue W L 2021 Corros. Sci. 190 109641Google Scholar

    [17]

    Bolobov V I, Podlevskikh N A 2007 Combust. Explos. Shock Waves 43 405Google Scholar

    [18]

    Titanium Combustion Research Program and user's Manual for Deck CCD 1152-0.0, Glickstein M R http://apps.dtic.mil/ [2023-12-4]

    [19]

    弭光宝, 陈航 中国专利, ZL201711188505.5 [2017-11-23]]

    Mi G B, Chen H Chinese Patent ZL201711188505.5 [2017-11-23]

    [20]

    黄伯云, 李成功, 石力开 2006 中国材料工程大典 (北京: 化学工业出版社) 第550页

    Huang B Y, Li C G, Shi L K 2006 China Materials Engineering Cannon (Beijing: Chemistry Industry Press) p550

    [21]

    Evans H E, Lobb R C 1984 Corros. Sci. 24 209Google Scholar

    [22]

    Evans H E, Lobb R C 1994 Mater. High Temp. 12 219Google Scholar

    [23]

    Park Y S, Butt D P 1998 Oxid. Met. 51 383

    [24]

    杨德钧, 沈卓身1999 金属腐蚀学(第一版) (北京: 冶金工艺出版社) 第11页

    Yang D J, Shen Z S 1999 Metal Corrosion (Vol. 1) (Beijing: Metallurgical Industry Press) p11

    [25]

    Bohle M, Etling D, Muller U, Sreenivasan K R S, Riedel U, Warnatz J 2004 Prandtl’s Essentials of Fluid Mechanics (Heidelberg: Springer) (2nd Ed.) p428

    [26]

    Liu Z, Welsch G 1988 Metall. Trans. A 19 1121Google Scholar

    [27]

    Gaddam R, Sefer B, Pederson R, Antti M L 2015 Mater. Charact. 99 166Google Scholar

  • 图 1  (a) 激光着火装置; (b) SEM样品制备方法示意图

    Figure 1.  Schematic diagram of (a) laser ignition equipment and (b) preparation method of samples for SEM observation.

    图 2  不同激光功率和氧体积浓度下, TA19合金的宏观燃烧形貌

    Figure 2.  Macro morphology of TA19 alloy burned at different laser powers and oxygen volume contents.

    图 3  TA19合金试样燃烧形貌示意图

    Figure 3.  Schematic diagram of the burning morphology of TA19 alloy.

    图 4  BL及BA随激光功率和氧浓度的变化规律 (a) 200 W; (b) 225 W; (c) 250 W; (d) 275 W; (e) 300 W; (f) 325 W

    Figure 4.  The variation law of BL and BA with laser power and oxygen concentration: (a) 200 W; (b) 225 W; (c) 250 W; (d) 275 W; (e) 300 W; (f) 325 W.

    图 5  未燃烧TA19合金的温度及熔体特征 (a) 温度分布随时间的变化关系; (b) 熔体形成规律随时间的变化关系; (c) 试样最高温度随时间的变化规律

    Figure 5.  The temperature and melt characteristics of unburnt TA19 alloy: (a) The relationship between temperature distribution and time; (b) the relationship between the formation of melt and time; (c) the variation of the highest temperature with time.

    图 6  起燃并扩展TA19合金的温度及熔体特征 (a) 起燃前后的温度分布随时间的变化关系; (b) 熔体形成规律随时间的变化关系; (c) 试样最高温度随时间的变化规律

    Figure 6.  The temperature and melt characteristics of TA19 alloy with ignition and extended combustion: (a) The relationship between temperature distribution and time; (b) the relationship between the formation of melt and time; (c) the variation of the highest temperature with time.

    图 7  持续燃烧TA19合金的温度特征 (a) 温度分布随时间的变化关系; (b) 熔体形成规律随时间的变化关系; (c) 试样最高温度随时间的变化规律

    Figure 7.  The temperature and melt characteristics of TA19 alloy with sustained burning: (a) The relationship between temperature distribution and time; (b) the relationship between the formation of melt and time; (c) the variation of the highest temperature with time.

    图 8  TA19合金的临界燃烧曲线

    Figure 8.  Critical burning curves of TA19 alloy.

    图 9  起燃温度随激光功率和氧体积浓度变化的实验测量结果

    Figure 9.  Experimental results of ignition temperature varied with laser power and oxygen concentration.

    图 10  未发生燃烧TA19合金显微组织的SEM观察结果

    Figure 10.  SEM observation of the unburnt TA19 alloy microstructure.

    图 11  TA19合金起燃组织的SEM形貌 (a) 300 W激光功率和21%氧体积浓度条件形成的起燃组织整体形貌; (b) 图(a)熔凝区放大形貌; (c) 300 W激光功率和25%氧体积浓度条件形成的起燃组织形貌; (d) FIB取样位置示意图

    Figure 11.  SEM microstructure of ignited TA19 alloy: (a) Overall microstructure formed under 300 W laser power and 21% oxygen volume concentration; (b) enlarged view of Figure (a); (c) microstructure formed under 300 W laser power and 25% oxygen volume concentration; (d) schematic diagram of FIB sampling location.

    图 12  TA19合金起燃组织燃烧区/熔凝区界面的TEM表征结果 (a) 明场像; (b) 暗场像; (c) Ti2O3 + Al2O3混合区域放大图像; (d) Al元素分布; (e) Ti元素分布; (f) O元素分布; (g) 位置1的SAED结果; (h) 位置2的SAED结果; (i) 位置3的SAED结果; (j) 位置4的SAED结果

    Figure 12.  TEM characterization results of the combustion zone/melting zone interface of ignited TA19 alloy: (a) Bright field image; (b) dark field image; (c) enlarged view of Ti2O3 + Al2O3 mixed region; (d) Al element distribution; (e) Ti element distribution; (f) O element distribution; (g) SAED pattern at position 1; (h) SAED pattern at position 2; (i) SAED pattern at position 3; (j) SAED pattern at position 4.

    图 13  钛合金起燃过程的保护性氧化层应力失效模型 (a) Evans和Lobb[21,22]提出的基本模型; (b) 起燃前形成的氧化层在孔隙缺陷影响下发生开裂; (c) 起燃后新形成的氧化层不能保持结构稳定

    Figure 13.  Stress failure model of oxide layer during the ignition of titanium alloy: (a) Basic model proposed by Evans and Lobb[21,22]; (b) the oxide layer formed before ignition cracks under the influence of pore defects; (c) the newly formed oxide layer after ignition cannot maintain stability.

    图 14  发生起燃TA19合金的缺陷尺寸统计图

    Figure 14.  Statistical chart of defect size of ignited TA19 alloy.

    图 15  激光功率、氧体积浓度和起燃温度的部分实验结果与拟合关系

    Figure 15.  Partial experimental results and fitting relationships of laser power, oxygen volume concent, and ignition temperature.

    图 16  TA19合金起燃与氧化过程反应活化能的比较

    Figure 16.  Comparison of activation energies for the ignition and oxidation processes of TA19 alloy.

    表 1  TA19合金起燃组织的元素分布

    Table 1.  Element distribution in the ignited TA19 alloy.

    元素原子数含量/%位置1位置2位置3位置4位置5位置6位置7
    Ti80.570.242.732.759.88.342.5
    Al10.38.918.22.25.429.21.2
    Zr2.13.20.70.70.30.20.2
    Mo1.21.50.20.20.30.30.3
    Sn1.12.10.10.10.20.20.2
    O4.814.138.164.134.059.655.6
    DownLoad: CSV

    表 2  TA19合金起燃点瞬时温度变化率的实验测量值

    Table 2.  Measured results of instantaneous temperature change rate of TA19 alloy at ignition temperature.

    激光功率PL/W 氧浓度c/% 起燃点瞬时温度
    变化率/(℃·s–1)
    225 34 305
    225 38 305
    250 32 300
    250 34 300
    250 38 310
    275 32 300
    275 35 325
    300 25 330
    300 30 310
    300 32 295
    300 34 305
    300 40 295
    300 50 300
    300 60 300
    325 21 330
    325 60 320
    DownLoad: CSV
    Baidu
  • [1]

    弭光宝, 谭勇, 陈航, 李培杰, 张学军 2024 航空材料学报 44 15Google Scholar

    Mi G B, Tan Y, Chen H, Li P J, Zhang X J 2024 J. Aeronaut. Mater. 44 15Google Scholar

    [2]

    Cai J M, Mi G B, Gao F, Huang H, Cao J X, Huang X, Cao C X 2016 J. Mater. Eng. 44 1

    [3]

    Leyens C, Kocian K, Hausmann J, Kaysser W A 2003 Aerosp. Sci. Technol. 7 201Google Scholar

    [4]

    Wolf J S, Moyle D D, Pruitt A B, Bader J H 1976 J. Electrochem. Soc. 123 C251

    [5]

    Leyens C, Peters M, Kaysser W A 1996 Mater. Sci. Technol. 15 1326

    [6]

    Mi G B, Huang X, Li P J, Cao J X, Huang X, Cao C X 2012 Trans. Nonferrous Met. Soc. China 22 2409Google Scholar

    [7]

    Zhao Y Q, Zhou L, Deng J 1999 Rare Met. Mater. Eng. 28 77

    [8]

    弭光宝, 黄旭, 曹京霞, 王宝, 曹春晓 2016 65 056103Google Scholar

    Mi G B, Huang X, Cao J X, Wang B, Cao C X 2016 Acta Phys. Sin. 65 056103Google Scholar

    [9]

    Shao L, Xie G L, Liu X H, Wu Y, Tan Q, Xie L, Xin S W, Hao F, Yu J B, Xue W L, Feng K 2022 Corros. Sci. 194 109957Google Scholar

    [10]

    Ouyang P X, Mi G B, Cao J X, Huang X, He L J, Li P J 2018 Mater. Today Commun. 16 364Google Scholar

    [11]

    Rozenband V I, Vaganova N I 1992 Combust. Flame 88 113Google Scholar

    [12]

    弭光宝, 黄旭, 曹京霞, 曹春晓 2012 航空材料学报 32 25Google Scholar

    Mi G B, Huang X, Cao J X, Cao C X 2012 J. Aeronaut. Mater. 32 25Google Scholar

    [13]

    Shafirovich E, Teoh S K, Varma A 2008 Combust. Flame 152 262Google Scholar

    [14]

    吴明宇, 弭光宝, 李培杰, 黄旭 2023 72 166102Google Scholar

    Wu M Y, Mi G B, Li P J, Huang X 2023 Acta Phys. Sin. 72 166102Google Scholar

    [15]

    梁贤烨, 弭光宝, 李培杰, 黄旭, 曹春晓 2020 65 216101Google Scholar

    Liang X Y, Mi G B, Li P J, Huang X, Cao C X 2020 Acta Phys. Sin. 65 216101Google Scholar

    [16]

    Shao L, Xie G L, Liu X H, Wu Y, Yu J B, Feng K, Xue W L 2021 Corros. Sci. 190 109641Google Scholar

    [17]

    Bolobov V I, Podlevskikh N A 2007 Combust. Explos. Shock Waves 43 405Google Scholar

    [18]

    Titanium Combustion Research Program and user's Manual for Deck CCD 1152-0.0, Glickstein M R http://apps.dtic.mil/ [2023-12-4]

    [19]

    弭光宝, 陈航 中国专利, ZL201711188505.5 [2017-11-23]]

    Mi G B, Chen H Chinese Patent ZL201711188505.5 [2017-11-23]

    [20]

    黄伯云, 李成功, 石力开 2006 中国材料工程大典 (北京: 化学工业出版社) 第550页

    Huang B Y, Li C G, Shi L K 2006 China Materials Engineering Cannon (Beijing: Chemistry Industry Press) p550

    [21]

    Evans H E, Lobb R C 1984 Corros. Sci. 24 209Google Scholar

    [22]

    Evans H E, Lobb R C 1994 Mater. High Temp. 12 219Google Scholar

    [23]

    Park Y S, Butt D P 1998 Oxid. Met. 51 383

    [24]

    杨德钧, 沈卓身1999 金属腐蚀学(第一版) (北京: 冶金工艺出版社) 第11页

    Yang D J, Shen Z S 1999 Metal Corrosion (Vol. 1) (Beijing: Metallurgical Industry Press) p11

    [25]

    Bohle M, Etling D, Muller U, Sreenivasan K R S, Riedel U, Warnatz J 2004 Prandtl’s Essentials of Fluid Mechanics (Heidelberg: Springer) (2nd Ed.) p428

    [26]

    Liu Z, Welsch G 1988 Metall. Trans. A 19 1121Google Scholar

    [27]

    Gaddam R, Sefer B, Pederson R, Antti M L 2015 Mater. Charact. 99 166Google Scholar

  • [1] Wu Ming-Yu, Mi Guang-Bao, Li Pei-Jie, Huang Xu. Evolution and mechanism of combustion microstructure of 600 ℃ high temperature titanium alloy. Acta Physica Sinica, 2023, 72(16): 166102. doi: 10.7498/aps.72.20230396
    [2] Liang Xian-Ye, Mi Guang-Bao, Li Pei-Jie, Huang Xu, Cao Chun-Xiao. Theoretical study on ignition of titanium alloy under high temperature friction condition. Acta Physica Sinica, 2020, 69(21): 216101. doi: 10.7498/aps.69.20200304
    [3] Xie Tian-Yuan, Wang Ju, Wang Zi-Xiong, Ma Chuang, Yu Yang, Li Tian-Yu, Fang Jie, Yu Jin-Long. Long-range, high-precision absolute distance measurement technology based on alternately oscillating optoelectronic oscillator. Acta Physica Sinica, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [4] Huang Mao-Jing, Bao Yun. Characteristics of flow and thermal boundary layer in turbulent Rayleigh-Bénard convection. Acta Physica Sinica, 2016, 65(20): 204702. doi: 10.7498/aps.65.204702
    [5] Guo Chun-Sheng, Wan Ning, Ma Wei-Dong, Zhang Yan-Feng, Xiong Cong, Feng Shi-Wei. Rapid identification of the consistency of failure mechanism for constant temperature stress accelerated testing. Acta Physica Sinica, 2013, 62(6): 068502. doi: 10.7498/aps.62.068502
    [6] Song Hai-Yang, Li Yu-Longi. The effects of stacking fault and temperature on deformation mechanism of nanocrystalline Mg. Acta Physica Sinica, 2012, 61(22): 226201. doi: 10.7498/aps.61.226201
    [7] Chen Dai-Bing, Wang Dong, Qin Fen, Wen Jie, Jin Xiao, An Hai-Shi, Zhang Xin-Kai. Relation analysis between starting voltage and input voltage for a magneticaly insulated linear oscillator. Acta Physica Sinica, 2012, 61(1): 012901. doi: 10.7498/aps.61.012901
    [8] Liu Gui-Li, Li Yong. The electronic theory study on high-temperature oxidation mechanism of TiAl alloy. Acta Physica Sinica, 2012, 61(17): 177101. doi: 10.7498/aps.61.177101
    [9] Yu Song-Nan, Wu Han-Hua, Chen Gen-Yu, Yuan Xin, Li Yue. Effect of Al(OH)3 sol concentration on characteristics of microarc oxidation coatings of titanium alloy. Acta Physica Sinica, 2011, 60(2): 028104. doi: 10.7498/aps.60.028104
    [10] Wang Shu-Jing, Ma Shan-Jun. A new three-mode entangled state representation generated by beamsplitter and polarizer. Acta Physica Sinica, 2011, 60(3): 030302. doi: 10.7498/aps.60.030302
    [11] Liu Gui-Li. An electronic theoretical study of the high-temperature oxidation behavior of Fe-Cr-Al alloy. Acta Physica Sinica, 2010, 59(1): 494-498. doi: 10.7498/aps.59.494
    [12] Yang Jing, Wang Zhi, Jia Yun-Yun, Han Ye-Mei. Mechanism of high-temperature exchange-coupling interaction of FeCo-based nanocrystalline alloy. Acta Physica Sinica, 2010, 59(11): 8148-8154. doi: 10.7498/aps.59.8148
    [13] Zhang Guo-ying, Li Dan, Liang Ting. Electronic structure and high-temperature oxidation behavior of Nb alloy. Acta Physica Sinica, 2010, 59(11): 8031-8036. doi: 10.7498/aps.59.8031
    [14] Liu Gui-Li, Yang Jie. Electronic theory study on high temperature oxidation mechanism of Nb-Ti-Al alloy. Acta Physica Sinica, 2010, 59(7): 4939-4944. doi: 10.7498/aps.59.4939
    [15] Liu Gui-Li. High temperature oxidation mechanism of Nb-Al alloys. Acta Physica Sinica, 2010, 59(1): 499-503. doi: 10.7498/aps.59.499
    [16] Zhang Guo-Ying, Zhang Hui, Wei Dan, Luo Zhi-Cheng, Li Yu-Cai. The mechanism of the influence of Bi(or Sb) and rare earth on high temperature performance of AZ91 magnesium alloy. Acta Physica Sinica, 2009, 58(1): 444-449. doi: 10.7498/aps.58.444
    [17] Tang Yuan-Guang, Wu Han-Hua, Chang Hong, Chen Gen-Yu, Sang Yong, Bai Yi-Zhen. Effects of cathodic voltage pulse duty cycle on characteristics of microarc oxidation coatings of titanium alloy. Acta Physica Sinica, 2009, 58(7): 4840-4845. doi: 10.7498/aps.58.4840
    [18] Wu Han-Hua, Long Bei-Hong, Long Bei-Yu, Tang Yuan-Guang, Chang Hong, Bai Yi-Zhen. Characteristics of electrical parameters during microarc oxidation of titanium alloys. Acta Physica Sinica, 2007, 56(11): 6537-6542. doi: 10.7498/aps.56.6537
    [19] Wang Yong-Gang, Chen Deng-Ping, He Hong-Liang, Wang Li-Li, Jing Fu-Qian. Temperature dependence of dynamic yield strength and spall strength for LY12 aluminum alloy under shock loading. Acta Physica Sinica, 2006, 55(8): 4202-4207. doi: 10.7498/aps.55.4202
    [20] WAN FA-RONG, CHU WU-YANG, XIAO JI-MEI, TAKAHASHI HEISHICHIRO. EFFECT OF HYDROGEN ON IRRADIATION INDUCED SEGREGATION IN Fe-10% Cr FERRITIC STEEL. Acta Physica Sinica, 1996, 45(3): 464-469. doi: 10.7498/aps.45.464
Metrics
  • Abstract views:  1808
  • PDF Downloads:  149
  • Cited By: 0
Publishing process
  • Received Date:  02 January 2024
  • Accepted Date:  30 January 2024
  • Available Online:  21 February 2024
  • Published Online:  20 April 2024

/

返回文章
返回
Baidu
map