搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FeCo基纳米晶合金高温交换耦合作用机理

杨静 王治 贾芸芸 韩叶梅

引用本文:
Citation:

FeCo基纳米晶合金高温交换耦合作用机理

杨静, 王治, 贾芸芸, 韩叶梅

Mechanism of high-temperature exchange-coupling interaction of FeCo-based nanocrystalline alloy

Yang Jing, Wang Zhi, Jia Yun-Yun, Han Ye-Mei
PDF
导出引用
  • 研究了500和600℃真空退火后的纳米晶Fe38.4Co40Si9B9Nb2.6Cu合金初始磁导率随温度的变化规律,发现较高温度(600℃)退火的FeCo基纳米晶合金,在非晶相居里温度以上较宽温度范围内磁导率没有明显的衰减,这是在双相纳米晶合金中观察到的一种新现象,其磁特性不同于Fe基纳米晶合金.为了探明这种现象的起源,估算了与剩余非晶相同成分的非晶合金的居里温度及纳米晶粒间发生交换耦合作用的参数
    Temperature dependence of initial permeability is investigated for nanocrystalline Fe38.4Co40Si9B9Nb2.6Cu alloy annealed at 500 and 600℃,and the initial permeability of 600℃-annealed sample is observed not to drop sharply at the Curie temperature of the residual amorphous phase,which is a new magnetic phenomenon in dual-phase nanocrystalline alloys. The origin of the above phenomenon is explored by estimating the Curie temperature of amorphous ribbons which have the same compositions with the residual amorphous phase in annealed nanocrystalline alloys. The results indicate that the Curie temperature of the intergranular amorphous region can be enhanced drastically up to the Curie temperature of the crystalline phase (TAC=TαC) when the exchange-field between adjacent nanograins penetrates through the amorphous interphase thoroughly. Furthermore, the effective exchange penetration length of FeCo-based nanocrystalline alloys (LFeCo) is evaluated to be 0.61 nm much larger than that of Fe-based nanocrystalline alloys, which may be the main reason of the higher permeability of FeCo-based alloys at elevated temperature.
    • 基金项目: 国家自然科学基金(批准号:50871073)资助的课题.
    [1]

    Yoshizawa Y,Oguma S,Yamauchi K J 1988 J. Appl. Phys. 64 6044

    [2]

    Chen S Y,Liu C S,Li H L,Cui T 2005 Acta Phys. Sin. 54 4157 (in Chinese) [陈岁元、刘常升、李惠莉、崔 彤 2005 54 4157]

    [3]

    Zhou X F,Tao S F,Liu Z Q,Kan J D,Li D X 2002 Acta Phys. Sin. 51 322 (in Chinese) [周效峰、陶淑芬、刘佐权、阚家德、李德修 2002 51 322]

    [4]

    Wang Z,He K Y,Yin J,Zhao Y H 1997 Acta Phys. Sin. 46 2054 (in Chinese) [王 治、何开元、尹 君、赵玉华 1997 46 2054]

    [5]

    Wang Z,He K Y,Jin J,Zhang L 2001 Mater. Sci. Eng. A 304- 306 1046

    [6]

    Willard M A,Laughlin D E,Mchenry M E 1998 J. Appl. Phys. 84 6773

    [7]

    Ding Y H,Liu X,Zhou S S,Long Y,Ye R C 2007 Acta Metall. Sin. (Engl. Lett) 20 327

    [8]

    Wang Z,Zhang P,Zhang D X,Han Y M,Chen X H,Ou Y N 2007 Journal of Functional Materials 38 957 (in Chinese) [王 治、张 鹏、张东须、韩叶梅、车相辉、欧阳宁 2007 功能材料 38 957]

    [9]

    Gercsi Zs,Mazaleyrat F,Varga L K 2006 J. Magn. Magn. Mater. 302 454

    [10]

    Han Y M,Wang Z,Che X H,Chen X G,Li W R,Li Y L 2009 Mater. Sci. Eng. B 156 57

    [11]

    Alben R,Becker J J,Chi M C1978 J. Appl. Phys. 49 1653

    [12]

    Ji S,Yang G B,Wang R 1996 Acta Phys. Sin. 45 2061 (in Chinese) [纪 松、杨国斌、王 润 1996 45 2061]

    [13]

    Hernando A,Kulik T 1994 Phys. Rev. B 49 7064

    [14]

    Gao Y H,Shindo D,Bitoh T,Makino A 2003 Phys. Rev. B 67 172409

    [15]

    Ma X H,Wang Z,Han X T 2007 Mater. Sci. Eng. A 448 216

    [16]

    Suzuki K,Cadogan J M 1998 Phys. Rev. B 58 2730

    [17]

    Ohnuma M,Ping D H,Abe T,Onodera H,Hono K 2003 J. Appl. Phys. 93 11

    [18]

    Kuhrt C,Herzer G 1996 IEEE Trans. Magn. 32 4881

    [19]

    Shen B G,Guo H Q,Zhan W S,Chen D X,Zhan Z Y,Wu Z L,Wang J L,Pan X S 1983 Communications in Theoretical Physics 2 22 (in Chinese) [沈保根、郭慧群、詹文山、陈笃行、章志英、吴宗林、王金玲、潘孝硕 1983 物理通讯 2 22]

    [20]

    Ma X H 2007 MS Thesis (Tianjin:Tianjin University of China ) (in Chinese) [马晓华 2007 硕士学位论文(天津:天津大学)]

    [21]

    Hernando A,Navarro I 1995 Phys. Rev. B 51 3281

    [22]

    Varga L K 2007 J. Magn. Magn. Mater 316 442

    [23]

    Hernando A 1994 T. Kulik. Phys. Rev. B 49 7064

    [24]

    Randrianantoandro N,S ' lawaska-Waniewska A,Greneche J M 1997 Phys. Rev. B 56 10797

    [25]

    Lu Y,Li Q A,Di N L,Ma X,Kou Z Q,Luo Z,Cheng Z H 2003 Chin. Phys. 12 789

    [26]

    Zhang X Y,Zhang F X,Zhang J W,Yu W,Zhang M,Zhao J H,Liu R P,Xu Y F,Wang W K 1998 J. Appl. Phys. 84 1918

    [27]

    Tang J C,Mao X Y,Li S D,Gao W L,Du Y W 2004 J. Alloys Compd. 375 233

    [28]

    Gomez-polo C,Marin P,Pascual L,Hernando A,Vazquez M 2002 Phys. Rev. B 65 24433

  • [1]

    Yoshizawa Y,Oguma S,Yamauchi K J 1988 J. Appl. Phys. 64 6044

    [2]

    Chen S Y,Liu C S,Li H L,Cui T 2005 Acta Phys. Sin. 54 4157 (in Chinese) [陈岁元、刘常升、李惠莉、崔 彤 2005 54 4157]

    [3]

    Zhou X F,Tao S F,Liu Z Q,Kan J D,Li D X 2002 Acta Phys. Sin. 51 322 (in Chinese) [周效峰、陶淑芬、刘佐权、阚家德、李德修 2002 51 322]

    [4]

    Wang Z,He K Y,Yin J,Zhao Y H 1997 Acta Phys. Sin. 46 2054 (in Chinese) [王 治、何开元、尹 君、赵玉华 1997 46 2054]

    [5]

    Wang Z,He K Y,Jin J,Zhang L 2001 Mater. Sci. Eng. A 304- 306 1046

    [6]

    Willard M A,Laughlin D E,Mchenry M E 1998 J. Appl. Phys. 84 6773

    [7]

    Ding Y H,Liu X,Zhou S S,Long Y,Ye R C 2007 Acta Metall. Sin. (Engl. Lett) 20 327

    [8]

    Wang Z,Zhang P,Zhang D X,Han Y M,Chen X H,Ou Y N 2007 Journal of Functional Materials 38 957 (in Chinese) [王 治、张 鹏、张东须、韩叶梅、车相辉、欧阳宁 2007 功能材料 38 957]

    [9]

    Gercsi Zs,Mazaleyrat F,Varga L K 2006 J. Magn. Magn. Mater. 302 454

    [10]

    Han Y M,Wang Z,Che X H,Chen X G,Li W R,Li Y L 2009 Mater. Sci. Eng. B 156 57

    [11]

    Alben R,Becker J J,Chi M C1978 J. Appl. Phys. 49 1653

    [12]

    Ji S,Yang G B,Wang R 1996 Acta Phys. Sin. 45 2061 (in Chinese) [纪 松、杨国斌、王 润 1996 45 2061]

    [13]

    Hernando A,Kulik T 1994 Phys. Rev. B 49 7064

    [14]

    Gao Y H,Shindo D,Bitoh T,Makino A 2003 Phys. Rev. B 67 172409

    [15]

    Ma X H,Wang Z,Han X T 2007 Mater. Sci. Eng. A 448 216

    [16]

    Suzuki K,Cadogan J M 1998 Phys. Rev. B 58 2730

    [17]

    Ohnuma M,Ping D H,Abe T,Onodera H,Hono K 2003 J. Appl. Phys. 93 11

    [18]

    Kuhrt C,Herzer G 1996 IEEE Trans. Magn. 32 4881

    [19]

    Shen B G,Guo H Q,Zhan W S,Chen D X,Zhan Z Y,Wu Z L,Wang J L,Pan X S 1983 Communications in Theoretical Physics 2 22 (in Chinese) [沈保根、郭慧群、詹文山、陈笃行、章志英、吴宗林、王金玲、潘孝硕 1983 物理通讯 2 22]

    [20]

    Ma X H 2007 MS Thesis (Tianjin:Tianjin University of China ) (in Chinese) [马晓华 2007 硕士学位论文(天津:天津大学)]

    [21]

    Hernando A,Navarro I 1995 Phys. Rev. B 51 3281

    [22]

    Varga L K 2007 J. Magn. Magn. Mater 316 442

    [23]

    Hernando A 1994 T. Kulik. Phys. Rev. B 49 7064

    [24]

    Randrianantoandro N,S ' lawaska-Waniewska A,Greneche J M 1997 Phys. Rev. B 56 10797

    [25]

    Lu Y,Li Q A,Di N L,Ma X,Kou Z Q,Luo Z,Cheng Z H 2003 Chin. Phys. 12 789

    [26]

    Zhang X Y,Zhang F X,Zhang J W,Yu W,Zhang M,Zhao J H,Liu R P,Xu Y F,Wang W K 1998 J. Appl. Phys. 84 1918

    [27]

    Tang J C,Mao X Y,Li S D,Gao W L,Du Y W 2004 J. Alloys Compd. 375 233

    [28]

    Gomez-polo C,Marin P,Pascual L,Hernando A,Vazquez M 2002 Phys. Rev. B 65 24433

  • [1] 姬慧慧, 高兴国, 李枝兰. 铜/锰异质结中维度驱动的交换耦合效应.  , 2024, 73(21): 216102. doi: 10.7498/aps.73.20240849
    [2] 施洪潮, 唐炳, 刘超飞. 双层蜂窝状海森伯铁磁体中层间交换耦合相互作用对拓扑相的影响.  , 2024, 73(13): 137501. doi: 10.7498/aps.73.20240437
    [3] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用.  , 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [4] 孙亚超, 朱明刚, 石晓宁, 宋利伟, 李卫. Nd-Ce-Fe-B纳米复合薄膜的磁性及交换耦合作用.  , 2017, 66(15): 157502. doi: 10.7498/aps.66.157502
    [5] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展.  , 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [6] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [7] 杨剑群, 马国亮, 李兴冀, 刘超铭, 刘海. 温度和应变速率耦合作用下纳米晶Ni压缩行为研究.  , 2015, 64(13): 137103. doi: 10.7498/aps.64.137103
    [8] 郑勇林, 卢孟春, 郭红霞, 包秀丽. 磁性金属材料中交换耦合作用和自旋波的研究.  , 2015, 64(17): 177501. doi: 10.7498/aps.64.177501
    [9] 李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏. HF+离子在旋轨耦合作用下电子态的特性.  , 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [10] 乔小溪, 张向军, 田煜, 孟永钢, 温诗铸. 液晶在电场和剪切耦合作用下的流变学行为.  , 2013, 62(17): 176101. doi: 10.7498/aps.62.176101
    [11] 侯志鹏, 张金宝, 徐世峰, 吴春姬, 王子涵, 杨坤隆, 王文全, 杜晓波, 苏峰. B元素添加对Co-Zr-Mo合金薄带的磁性能及结构的影响.  , 2012, 61(20): 207501. doi: 10.7498/aps.61.207501
    [12] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响.  , 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [13] 姚小虎, 韩 强. 热力耦合作用下双层碳纳米管的扭转屈曲.  , 2008, 57(8): 5056-5062. doi: 10.7498/aps.57.5056
    [14] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收.  , 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [15] 冯维存, 高汝伟, 韩广兵, 朱明刚, 李 卫. NdFeB纳米复合永磁材料的交换耦合相互作用和有效各向异性.  , 2004, 53(9): 3171-3176. doi: 10.7498/aps.53.3171
    [16] 姜宏伟, 李明华, 王艾玲, 郑鹉. NiFe/FeMn双层膜的交换耦合.  , 2004, 53(4): 1232-1235. doi: 10.7498/aps.53.1232
    [17] 荣传兵, 张宏伟, 陈仁杰, 贺淑莉, 张绍英, 沈保根. 纳米晶永磁材料晶间交换耦合作用的模拟计算研究.  , 2004, 53(12): 4353-4358. doi: 10.7498/aps.53.4353
    [18] 刘先松, 钟伟, 杨森, 姜洪英, 顾本喜, 都有为. 纳米晶复合SrFe12O19γ-Fe2O3永磁铁氧体的制备和交换耦合作用.  , 2002, 51(5): 1128-1132. doi: 10.7498/aps.51.1128
    [19] 王亦忠, 胡季帆, 张绍英, 张宏伟, 沈保根. Nd-Fe(Co,Nb)-B交换耦合磁体的磁性.  , 1999, 48(3): 520-526. doi: 10.7498/aps.48.520
    [20] 朱嘉麟. 浅杂质势与窄量子阱的耦合作用.  , 1989, 38(7): 1093-1102. doi: 10.7498/aps.38.1093
计量
  • 文章访问数:  9323
  • PDF下载量:  680
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-01-29
  • 修回日期:  2010-03-10
  • 刊出日期:  2010-11-15

/

返回文章
返回
Baidu
map