-
本文研究了硅柱在MnFe2O4磁性液体背景中排列成六边形结构的二维光子晶体的可调谐负折射特性. 利用平面波展开法和时域有限差分法理论研究了硅柱-磁性液体体系二维光子晶体的带隙结构、等频曲线和负折射现象随外磁场强度的变化关系. 模拟结果表明, 硅柱-磁性液体体系二维光子晶体工作在TE模式时, 其负折射特性可由外磁场调节. 在固定背景溶液的磁性颗粒体积分数和入射光频率时, 所研究的折射光束的偏转角和光子晶体的负折射率绝对值随外磁场的增大而增大, 而在固定背景溶液的磁性颗粒体积分数和外磁场强度时, 负折射角和负折射率的绝对值随入射光归一化频率增大而减小. 固定外场强度和入射光频率时, 所研究结构的负折射特性随背景溶液的磁性颗粒体积分数增大而变弱.Tunable negative refraction of two-dimensional photonic crystal made of silicon cylinders hexagonally arranged in a MnFe2O4 magnetic liquid is studied. The plane wave expansion and finite-difference time-domain method are used to calculate and simulate its band structure, equi-frequency surface and negative refraction property. For the TE mode, the negative refraction of the two-dimensional photonic crystal made of the silicon column-magnetic liquid system can be tuned by a magnetic field. When the volume fraction of magnetic nanoparticles within the magnetic liquid and the frequency of the incident light are fixed, the deflection angle of the refraction light and the absolute value of the negative refractive index increase gradually with the external magnetic field increasing. When the volume fraction of magnetic nanoparticles within the magnetic liquid and the strength of the external magnetic field are fixed, the absolute value of the negative refractive angle and negative refractive index decrease with the normalized frequency of the incident light increasing. In addition, when the external magnetic field and the normalized frequency of the incident light are fixed, the negative refraction weakens with the increase of magnetic nanoparticle volume fraction of background solution.
-
Keywords:
- magnetic liquids /
- negative refraction /
- tunability
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[3] Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401
[4] Parimi P V, Lu W T, Vodo P, Sokoloff J, Derov J S, Sridhar S 2004 Phys. Rev. Lett .92 127401
[5] Chen J B, Wang Y, Jia B H, Geng T, Li X P, Feng L, Qian W, Liang B M, Zhang X X, Gu M, Zhuang S L 2011 Nat. Photon 5 239
[6] Luo C, Ibanescu M, Johnson S G, Joannopoulos J D 2003 Science 299 368
[7] Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon 3 461
[8] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[9] Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107
[10] Luo C, Johnson S G, Joannopoulos J D, Pendry J B 2002 Phys. Rev. B 65 201104
[11] Patel R 2009 J. Opt. A: Pure. Appl. Opt. 11 125004
[12] Pu S, Chen X, Chen L, Liao W, Chen Y, Xia Y 2005 Appl. Phys. Lett. 87 021901
[13] Patel R, Mehta R V 2010 Eur Phys. J. Appl. Phys. 52 30702
[14] Li J, Lin Y Q, Liu X D, Wen B C, Zhang T Z, Zhang Q M, Miao H 2010 Opt. Commun. 283 1182
[15] Horng H E, Chen C S, Fang K L, Yang S Y, Chieh J J, Hong C Y, Yang H C 2004 Appl. Phys. Lett. 85 5592
[16] Patel R 2011 J. Magn. Magn. Mater. 323 1360
[17] Yang H C, Jeany B Y, Yang S Y, Horng H E, Huang T P, Hong C Y 2002 J. Magn .Magn. Mater. 252 287
[18] Fan C Z, Wang G, Huang J P 2008 J. Appl. Phys. 103 094107
[19] Pu S, Geng T, Chen X, Zeng X, Liu M, Di Z 2008 J. Magn. Magn. Mater. 320 2345
[20] Pu S, Liu M 2009 J. Alloys Compd 481 851
[21] Gao Y, Huang J P, Liu Y M, Gao L, Yu K W, Zhang X 2010 Phys. Rev. Lett. 104 034501
[22] Hong C-Y, Horng H E, Kuo F C, Yang S Y, Yang H C, Wu J M 1999 Appl. Phys. Lett. 75 2196
[23] Yang S Y, Horng H E, Shiao Y T, Hong C-Y, Yang H C 2006 J. Magn. Magn .Mater. 307 43
[24] Fan C Z, Huang J P 2006 Appl. Phys. Lett. 89 141906
[25] Notomi M 2000 Phys. Rev. B 62 10696
[26] Notomi M 2002 Opt Quantum Electron 34 133
-
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184
[3] Houck A A, Brock J B, Chuang I L 2003 Phys. Rev. Lett. 90 137401
[4] Parimi P V, Lu W T, Vodo P, Sokoloff J, Derov J S, Sridhar S 2004 Phys. Rev. Lett .92 127401
[5] Chen J B, Wang Y, Jia B H, Geng T, Li X P, Feng L, Qian W, Liang B M, Zhang X X, Gu M, Zhuang S L 2011 Nat. Photon 5 239
[6] Luo C, Ibanescu M, Johnson S G, Joannopoulos J D 2003 Science 299 368
[7] Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photon 3 461
[8] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[9] Foteinopoulou S, Soukoulis C M 2003 Phys. Rev. B 67 235107
[10] Luo C, Johnson S G, Joannopoulos J D, Pendry J B 2002 Phys. Rev. B 65 201104
[11] Patel R 2009 J. Opt. A: Pure. Appl. Opt. 11 125004
[12] Pu S, Chen X, Chen L, Liao W, Chen Y, Xia Y 2005 Appl. Phys. Lett. 87 021901
[13] Patel R, Mehta R V 2010 Eur Phys. J. Appl. Phys. 52 30702
[14] Li J, Lin Y Q, Liu X D, Wen B C, Zhang T Z, Zhang Q M, Miao H 2010 Opt. Commun. 283 1182
[15] Horng H E, Chen C S, Fang K L, Yang S Y, Chieh J J, Hong C Y, Yang H C 2004 Appl. Phys. Lett. 85 5592
[16] Patel R 2011 J. Magn. Magn. Mater. 323 1360
[17] Yang H C, Jeany B Y, Yang S Y, Horng H E, Huang T P, Hong C Y 2002 J. Magn .Magn. Mater. 252 287
[18] Fan C Z, Wang G, Huang J P 2008 J. Appl. Phys. 103 094107
[19] Pu S, Geng T, Chen X, Zeng X, Liu M, Di Z 2008 J. Magn. Magn. Mater. 320 2345
[20] Pu S, Liu M 2009 J. Alloys Compd 481 851
[21] Gao Y, Huang J P, Liu Y M, Gao L, Yu K W, Zhang X 2010 Phys. Rev. Lett. 104 034501
[22] Hong C-Y, Horng H E, Kuo F C, Yang S Y, Yang H C, Wu J M 1999 Appl. Phys. Lett. 75 2196
[23] Yang S Y, Horng H E, Shiao Y T, Hong C-Y, Yang H C 2006 J. Magn. Magn .Mater. 307 43
[24] Fan C Z, Huang J P 2006 Appl. Phys. Lett. 89 141906
[25] Notomi M 2000 Phys. Rev. B 62 10696
[26] Notomi M 2002 Opt Quantum Electron 34 133
计量
- 文章访问数: 6801
- PDF下载量: 573
- 被引次数: 0