-
高效宽带二次谐波转换在光通信、信号处理和光谱学等很多领域都有重要的应用. 通常高效宽带二次谐波转换的研究都集中在几个波长,为了得到可调谐准相位匹配高效宽带二次谐波转换, 理论分析了准相位匹配和群速度匹配条件.在此基础上,分别计算了0型和Ⅰ型准相位匹配情况下, 温度对5 mol%掺杂氧化镁周期性极化铌酸锂和周期性极化铌酸锂晶体准相位匹配高效宽带二次谐波转换的影响. 对于5 mol%掺杂氧化镁周期性极化铌酸锂晶体,在0型和Ⅰ型准相位匹配情况下, 分别得到了调谐宽度15 nm和341 nm的可调谐准相位匹配高效宽带二次谐波转换; 对于周期性极化铌酸锂晶体,在0型和Ⅰ型准相位匹配情况下,分别得到了调谐宽度44 nm和98 nm的可调谐准相位匹配高效宽带二次谐波转换.拓展了准相位匹配高效宽带二次谐波转换的波长范围.
-
关键词:
- 可调谐 /
- 高效宽带二次谐波转换 /
- 温度
High efficiency broadband second-harmonic conversion plays an important role in communication, signal processing, spectroscopy and so on. In general, the study of high efficiency broadband second-harmonic conversion focuses on a few of wavelengths. For obtaining tunable high efficiency broadband second-harmonic conversion in quasi-phase matching, the group-velocity and quasi-phase matched condition are analyzed. The temperature effect on high-efficiency broadband second-harmonic conversion in types 0 and Ⅰ quasi-phase matched condition for 5 mol% periodically poled LiNbO3 and periodically poled LiNbO3 is studied. The results show that 15 nm and 341 nm tunable high efficiency broadband second-harmonic conversions are obtained in types 0 and Ⅰ quasi-phase matched conditions for 5 mol% periodically poled LiNbO3; 44 nm and 98 nm tunable high efficiency broadband second-harmonic conversions are obtained in types 0 and Ⅰ quasi-phase matched condition for periodically poled LiNbO3. The range of high efficiency broadband second-harmonic conversion wavelength is expanded.[1] Ashihara S, Shimura T, Kuroda K 2003 J. Opt. Soc. Am. B 20 853
[2] Sidick E, Knoesen A, Dienes A 1995 J. Opt. Soc. Am. B 12 1704
[3] Sidick E, Knoesen A, Dienes A 1995 J. Opt. Soc. Am. B 12 1713
[4] Alford W J, Smith A V 2001 J. Opt. Soc. Am. B 18 515
[5] Martinez O E 1989 IEEE J. Quantum Electron. 25 2464
[6] Szabo G, Bor Z 1990 Appl. Phys. B 50 51
[7] Chen Y L, Yuan J W, Yan W G, Zhou B B, Luo Y F, Guo J 2005 Acta Phys. Sin. 54 2079 (in Chinese) [陈云琳, 袁建伟, 闫卫国, 周斌斌, 罗勇锋, 郭娟 2005 54 2079]
[8] Arbore M A, Marco O, Fejer M M 1997 Opt. Lett. 22 865
[9] Arbore M A, Galvanauskas A, Harter D, Chou M H, Fejer M M 1997 Opt. Lett. 22 1341
[10] Imeshev G, Arbore M A, Fejer M M, Galvanauskas A, Fermann M, Harter D 2000 J. Opt. Soc. Am. B 17 304
[11] Yu N E, Ro J H, Cha M, Kurimura S, Taira T 2002 Opt. Lett. 27 1046
[12] Yu N E, Kurimura S, Kitamura K, Ro J H, Cha M, Ashihara S, Shimura T, Kuroda K, Taira T 2003 Appl. Phys. Lett. 82 3388
[13] Ren A H, Liu Z Y, Zhang R Z, Liu J L, Sun N C 2010 Acta Phys. Sin. 59 7050 (in Chinese) [任爱红, 刘正颖, 张蓉竹, 刘静伦, 孙年春 2010 59 7050]
[14] Liu T, Yu S, Zhang H, Shi P M, Gu W Y 2009 Acta Phys. Sin. 58 2482 (in Chinese) [刘涛, 喻松, 张华, 史培明, 顾畹仪 2009 58 2482]
[15] Gayer O, Sacks Z, Galun E, Arie A 2008 Appl. Phys. B 91 343
[16] Chen Y P, Chen X F, Xie S W, Zeng X L, Xia Y X, Chen Y L 2002 J. Opt. A 4 324
[17] Edwards G J, Lawrence M 1984 Opt. Quantum Electron. 16 373
-
[1] Ashihara S, Shimura T, Kuroda K 2003 J. Opt. Soc. Am. B 20 853
[2] Sidick E, Knoesen A, Dienes A 1995 J. Opt. Soc. Am. B 12 1704
[3] Sidick E, Knoesen A, Dienes A 1995 J. Opt. Soc. Am. B 12 1713
[4] Alford W J, Smith A V 2001 J. Opt. Soc. Am. B 18 515
[5] Martinez O E 1989 IEEE J. Quantum Electron. 25 2464
[6] Szabo G, Bor Z 1990 Appl. Phys. B 50 51
[7] Chen Y L, Yuan J W, Yan W G, Zhou B B, Luo Y F, Guo J 2005 Acta Phys. Sin. 54 2079 (in Chinese) [陈云琳, 袁建伟, 闫卫国, 周斌斌, 罗勇锋, 郭娟 2005 54 2079]
[8] Arbore M A, Marco O, Fejer M M 1997 Opt. Lett. 22 865
[9] Arbore M A, Galvanauskas A, Harter D, Chou M H, Fejer M M 1997 Opt. Lett. 22 1341
[10] Imeshev G, Arbore M A, Fejer M M, Galvanauskas A, Fermann M, Harter D 2000 J. Opt. Soc. Am. B 17 304
[11] Yu N E, Ro J H, Cha M, Kurimura S, Taira T 2002 Opt. Lett. 27 1046
[12] Yu N E, Kurimura S, Kitamura K, Ro J H, Cha M, Ashihara S, Shimura T, Kuroda K, Taira T 2003 Appl. Phys. Lett. 82 3388
[13] Ren A H, Liu Z Y, Zhang R Z, Liu J L, Sun N C 2010 Acta Phys. Sin. 59 7050 (in Chinese) [任爱红, 刘正颖, 张蓉竹, 刘静伦, 孙年春 2010 59 7050]
[14] Liu T, Yu S, Zhang H, Shi P M, Gu W Y 2009 Acta Phys. Sin. 58 2482 (in Chinese) [刘涛, 喻松, 张华, 史培明, 顾畹仪 2009 58 2482]
[15] Gayer O, Sacks Z, Galun E, Arie A 2008 Appl. Phys. B 91 343
[16] Chen Y P, Chen X F, Xie S W, Zeng X L, Xia Y X, Chen Y L 2002 J. Opt. A 4 324
[17] Edwards G J, Lawrence M 1984 Opt. Quantum Electron. 16 373
计量
- 文章访问数: 9168
- PDF下载量: 478
- 被引次数: 0