Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural design of dual carrier multiplication avalanche photodiodes on InP substrate

Zhao Hua-Liang Peng Hong-Ling Zhou Xu-Yan Zhang Jian-Xin Niu Bo-Wen Shang Xiao Wang Tian-Cai Cao Peng

Citation:

Structural design of dual carrier multiplication avalanche photodiodes on InP substrate

Zhao Hua-Liang, Peng Hong-Ling, Zhou Xu-Yan, Zhang Jian-Xin, Niu Bo-Wen, Shang Xiao, Wang Tian-Cai, Cao Peng
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Avalanche photodiodes are widely used in various fields, such as optical communication and laser radar, because of their high multiplication. In order to adapt to very weak signal detection applications, devices are required to have higher gain values. The existing avalanche photodiodes generally use single carrier multiplication mode of operation, its multiplication effect is limited. In this paper is designed an InP/In0.53Ga0.47As/In0.52Al0.48As avalanche photodiode structure with electrons and holes jointly involved in multiplication. In this structure, In0.53Ga0.47As material is used for the absorption layer, InP material is used for the hole multiplication layer, In0.52Al0.48As is used for the electron multiplication layer, and the two multiplication layers are distributed on the upper side and lower side of the absorber layer. Under the reverse bias, the photogenerated electrons and the absorber-layer generated holes can enter into the respective multiplier layers in different directions and create the avalanche multiplication effect, so that the carriers are fully utilized. This structure and the conventional single multiplication layer structure are simulated by Silvaco TCAD software. Comparing the single InP multiplication layer structure with the single In0.52Al0.48As multiplication layer structure, the gain value of the double multiplication layer structure at 95% breakdown voltage is about 2.3 times and about 2 times of the former two, respectively, and the device has a larger gain value because both carriers are involved in multiplication in both multiplication layers at the same time. The structure has a dark current of 1.5 nA at 95% breakdown voltage, which does not increase in comparison with the single multiplication layer structure, owing to the effective control of the electric field inside the structure by multiple charge layers. Therefore, this structure is expected to improve the detection sensitivity of the system.
      Corresponding author: Peng Hong-Ling, hlpeng@semi.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0200900).
    [1]

    Mccarthy A, Ren X, Della F A, Gemmell N R, Krichel N J, Scarcella C, Rugger A, Tosi A, Buller G S 2013 Opt. Express 21 22098Google Scholar

    [2]

    Bertone N, Clark W 2007 Laser Focus World 43 69

    [3]

    Mitra P, Beck J D, Skokan M R, Skokan M R, Robinson J E, Antoszewski J, Winchester K J, Keating A J, Nguyen T, Silva K, Musca C A, Dell J M, Faraone L 2006 SPIE Defense Commercial Sensing Orlando, United States, April 14–19, 2006 p70

    [4]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192Google Scholar

    [5]

    Jiang X, Itzler M, O’Donnell K, Entwistle M, Owens M, Slomkowski K, Rangwala S S 2014 IEEE J. Sel. Top. Quant. 21 5Google Scholar

    [6]

    Lee C, Johnson B, Molnar A C 2015 App. Phys. Lett. 106 231105Google Scholar

    [7]

    Nishida K, Taguchi K, Matsumoto Y 1979 App. Phys. Lett. 35 251Google Scholar

    [8]

    Li J, Dehzangi A, Brown G J, Razeghi M 2021 Sci. Rep. 11 7104Google Scholar

    [9]

    Tarof L E 1990 IEEE Photonic. Tech. L. 2 643Google Scholar

    [10]

    Campbell J C, Dentai A G, Holden W S, Kasper B L 1983 Electron. Lett. 19 818Google Scholar

    [11]

    Matsushima Y, Akiba S, Sakai K, Kushiro Y, Noda Y, Utaka K 1982 Electron. Lett. 22 945Google Scholar

    [12]

    Capasso F, Cho A Y, Foy P W 1984 Electron. Lett. 20 635Google Scholar

    [13]

    Forrest S R, Kim O K, Smith R G 1982 App. Phys. Lett. 41 95Google Scholar

    [14]

    Ma C, Deen M J, Tarof L E 1995 IEEE Trans. Electron Devices 42 2070Google Scholar

    [15]

    Emmons R B 1967 J. Appl. Phys. 38 3705Google Scholar

    [16]

    Mcintyre R J 1966 IEEE Trans. Electron Devices 13 164Google Scholar

    [17]

    曾巧玉 2014 博士学位论文 (北京: 中国科学院大学)

    Zeng Q Y 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [18]

    吕粤希 2018 硕士学位论文 (北京: 中国科学院大学)

    Lü Y X 2018 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [19]

    Cook L W, Bulman G E, Stillman G E 1982 App. Phys. Lett. 40 589Google Scholar

    [20]

    Goh Y L, Massey D, Marshall A R, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P, Jones S 2007 IEEE Trans. Electron Devices 54 11Google Scholar

    [21]

    Capasso F, Mohammed K, Alavi K, Cho A Y, Foy P W 1984 App. Phys. Lett. 45 968Google Scholar

    [22]

    Melchior H, Hartman A R, Schinke D P, Seidel T E 1978 Bell Syst. Tech. J. 57 1791Google Scholar

    [23]

    Li X, Bamiedakis N, Wei J L, Penty R V, White I H 2014 Conference on Lasers and Electro-Optics (CLEO)—Laser Science to Photonic Applications San Jose, United States, June 8–13, 2014 p1

    [24]

    Campbell J C 2004 IEEE J. Sel. Top. Quant. 10 777Google Scholar

    [25]

    Miller S L 1955 Phys. Rev. 99 1234Google Scholar

    [26]

    Ma C F, Deen M J, Tarof L E 1997 Adv. Imag. Elect. Phys. 99 65Google Scholar

    [27]

    Jones A H, March S D, Dadey A A, Muhowski A J, Bank S R, Campbell J C 2022 IEEE J. Quantum Electron. 58 1Google Scholar

    [28]

    Woodson M E, Ren M, Maddox S J, Chen Y, Bank S R, Campbell J C 2016 App. Phys. Lett. 108 081102Google Scholar

    [29]

    Huang J, Banerjee K, Ghosh S, Hayat M M 2013 IEEE Trans. Electron Devices 60 2296Google Scholar

    [30]

    Okuto Y, Crowell C R 1974 Phys. Rev. B 10 4284Google Scholar

    [31]

    谢生, 张帆, 毛陆虹 2022 华中科技大学学报(自然科学版) 5 1Google Scholar

    Xie S, Zhang F, Mao L H 2022 J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition) 5 1Google Scholar

    [32]

    Saleh M A, Hayat M M, Sotirelis P, Holmes A L, Campbell J C, Saleh B E, Teich M C 2001 IEEE Trans. Electron Devices 48 2722Google Scholar

    [33]

    李慧梅 2016 硕士学位论文 (北京: 中国科学院大学)

    Li H M 2016 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [34]

    Haško D, Kovác J, Uherek F, Škriniarová J, Jakabovic J, Peternai L 2006 Microelectron. J. 37 483Google Scholar

  • 图 1  双载流子倍增APD结构示意图

    Figure 1.  Schematic diagram of double carrier multiplication APD structure.

    图 2  双载流子倍增APD能带示意图

    Figure 2.  Band diagram of the double carrier multiplication APD.

    图 3  结构Ⅰ零偏压能带分布

    Figure 3.  Energy band distribution under zero bias of structure I.

    图 4  结构Ⅰ在击穿电压下的电场分布

    Figure 4.  Distribution of electric field at breakdown voltage for structure Ⅰ.

    图 5  结构Ⅰ在击穿电压下的电离系数分布

    Figure 5.  Distribution of ionization coefficient at breakdown voltage for structure Ⅰ.

    图 6  结构Ⅰ的I-V特性与增益曲线

    Figure 6.  Currrent-voltage characteristics and gain of the structure Ⅰ.

    图 7  不同反向偏压下结构Ⅰ的电场分布

    Figure 7.  Electric field distribution of structure Ⅰ under the different reverse bias voltage.

    图 8  I-V特性与增益曲线 (a)结构Ⅱ; (b)结构Ⅲ

    Figure 8.  Curve of I-V characteristics and gain: (a) Structure Ⅱ; (b) structure Ⅲ.

    图 9  简化的结构Ⅰ电场分布

    Figure 9.  Electric field distribution of the simplified structure Ⅰ.

    表 1  InAlAs和InP碰撞电离系数的仿真参数

    Table 1.  Simulation parameters for the ionization coefficients of InAlAs and InP.

    材料 an/cm–1 ap/cm–1 bn/(V·cm–1) bp/(V·cm–1)
    InP 1.0×107 9.36×107 3.45×106 2.78×106
    InAlAs 6.2×107 1.00×106 4.00×106 4.00×106
    DownLoad: CSV

    表 2  三种结构特性对比

    Table 2.  Comparison of the characteristics of three structures.

    结构击穿电压/V暗电流/nA增益
    691.5(@66 V)35(@66 V)
    442.0(@42 V)15(@42 V)
    451.5(@43 V)18(@43 V)
    DownLoad: CSV
    Baidu
  • [1]

    Mccarthy A, Ren X, Della F A, Gemmell N R, Krichel N J, Scarcella C, Rugger A, Tosi A, Buller G S 2013 Opt. Express 21 22098Google Scholar

    [2]

    Bertone N, Clark W 2007 Laser Focus World 43 69

    [3]

    Mitra P, Beck J D, Skokan M R, Skokan M R, Robinson J E, Antoszewski J, Winchester K J, Keating A J, Nguyen T, Silva K, Musca C A, Dell J M, Faraone L 2006 SPIE Defense Commercial Sensing Orlando, United States, April 14–19, 2006 p70

    [4]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192Google Scholar

    [5]

    Jiang X, Itzler M, O’Donnell K, Entwistle M, Owens M, Slomkowski K, Rangwala S S 2014 IEEE J. Sel. Top. Quant. 21 5Google Scholar

    [6]

    Lee C, Johnson B, Molnar A C 2015 App. Phys. Lett. 106 231105Google Scholar

    [7]

    Nishida K, Taguchi K, Matsumoto Y 1979 App. Phys. Lett. 35 251Google Scholar

    [8]

    Li J, Dehzangi A, Brown G J, Razeghi M 2021 Sci. Rep. 11 7104Google Scholar

    [9]

    Tarof L E 1990 IEEE Photonic. Tech. L. 2 643Google Scholar

    [10]

    Campbell J C, Dentai A G, Holden W S, Kasper B L 1983 Electron. Lett. 19 818Google Scholar

    [11]

    Matsushima Y, Akiba S, Sakai K, Kushiro Y, Noda Y, Utaka K 1982 Electron. Lett. 22 945Google Scholar

    [12]

    Capasso F, Cho A Y, Foy P W 1984 Electron. Lett. 20 635Google Scholar

    [13]

    Forrest S R, Kim O K, Smith R G 1982 App. Phys. Lett. 41 95Google Scholar

    [14]

    Ma C, Deen M J, Tarof L E 1995 IEEE Trans. Electron Devices 42 2070Google Scholar

    [15]

    Emmons R B 1967 J. Appl. Phys. 38 3705Google Scholar

    [16]

    Mcintyre R J 1966 IEEE Trans. Electron Devices 13 164Google Scholar

    [17]

    曾巧玉 2014 博士学位论文 (北京: 中国科学院大学)

    Zeng Q Y 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [18]

    吕粤希 2018 硕士学位论文 (北京: 中国科学院大学)

    Lü Y X 2018 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [19]

    Cook L W, Bulman G E, Stillman G E 1982 App. Phys. Lett. 40 589Google Scholar

    [20]

    Goh Y L, Massey D, Marshall A R, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P, Jones S 2007 IEEE Trans. Electron Devices 54 11Google Scholar

    [21]

    Capasso F, Mohammed K, Alavi K, Cho A Y, Foy P W 1984 App. Phys. Lett. 45 968Google Scholar

    [22]

    Melchior H, Hartman A R, Schinke D P, Seidel T E 1978 Bell Syst. Tech. J. 57 1791Google Scholar

    [23]

    Li X, Bamiedakis N, Wei J L, Penty R V, White I H 2014 Conference on Lasers and Electro-Optics (CLEO)—Laser Science to Photonic Applications San Jose, United States, June 8–13, 2014 p1

    [24]

    Campbell J C 2004 IEEE J. Sel. Top. Quant. 10 777Google Scholar

    [25]

    Miller S L 1955 Phys. Rev. 99 1234Google Scholar

    [26]

    Ma C F, Deen M J, Tarof L E 1997 Adv. Imag. Elect. Phys. 99 65Google Scholar

    [27]

    Jones A H, March S D, Dadey A A, Muhowski A J, Bank S R, Campbell J C 2022 IEEE J. Quantum Electron. 58 1Google Scholar

    [28]

    Woodson M E, Ren M, Maddox S J, Chen Y, Bank S R, Campbell J C 2016 App. Phys. Lett. 108 081102Google Scholar

    [29]

    Huang J, Banerjee K, Ghosh S, Hayat M M 2013 IEEE Trans. Electron Devices 60 2296Google Scholar

    [30]

    Okuto Y, Crowell C R 1974 Phys. Rev. B 10 4284Google Scholar

    [31]

    谢生, 张帆, 毛陆虹 2022 华中科技大学学报(自然科学版) 5 1Google Scholar

    Xie S, Zhang F, Mao L H 2022 J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition) 5 1Google Scholar

    [32]

    Saleh M A, Hayat M M, Sotirelis P, Holmes A L, Campbell J C, Saleh B E, Teich M C 2001 IEEE Trans. Electron Devices 48 2722Google Scholar

    [33]

    李慧梅 2016 硕士学位论文 (北京: 中国科学院大学)

    Li H M 2016 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [34]

    Haško D, Kovác J, Uherek F, Škriniarová J, Jakabovic J, Peternai L 2006 Microelectron. J. 37 483Google Scholar

  • [1] Wu Chen-Yi, Wang Lin-Li, Shi Hao-Tian, Wang Yu-Rong, Pan Hai-Feng, Li Zhao-Hui, Wu Guang. Single-photon ranging with hundred-micron accuracy. Acta Physica Sinica, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [2] Xu Jin, Guo Yang-Ning, Luo Ning-Ning, Li Shu-Jing, Shi Jiu-Lin, He Xing-Dao. Influence of water parameters on threshold value and gain coefficient of stimulated Brillouin scattering. Acta Physica Sinica, 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [3] Zhang Hai-Yan, Wang Lin-Li, Wu Chen-Yi, Wang Yu-Rong, Yang Lei, Pan Hai-Feng, Liu Qiao-Li, Guo Xia, Tang Kai, Zhang Zhong-Ping, Wu Guang. Avalanche photodiode single-photon detector with high time stability. Acta Physica Sinica, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [4] Wang Yun-Xin, Li Hong-Li, Wang Da-Yong, Li Jing-Nan, Zhong Xin, Zhou Tao, Yang Deng-Cai, Rong Lu. Dual-parallel Mach-Zehnder modulator based microwave photonic down-conversion link with high dynamic range. Acta Physica Sinica, 2017, 66(9): 098401. doi: 10.7498/aps.66.098401
    [5] Zhang Yu-Lian, Qi Hui-Rong, Hu Bi-Tao, Wen Zhi-Wen, Wang Hai-Yun, Ouyang Qun, Chen Yuan-Bo, Zhang Jian. Measurement and simulation of the hybrid structure gaseous detector gain. Acta Physica Sinica, 2017, 66(14): 142901. doi: 10.7498/aps.66.142901
    [6] Zhang Yi-Lun, Lan Tian, Gao Ming-Guang, Zhao Tao, Shen Zhen-Min. Design of two-cascade optical antenna for indoor visible light communication. Acta Physica Sinica, 2015, 64(16): 164201. doi: 10.7498/aps.64.164201
    [7] Niu De-Zhi, Chen Chang-Xing, Ban Fei, Xu Hao-Xiang, Li Yong-Bin, Wang Zhuo, Ren Xiao-Yue, Chen Qiang. Blind angle elimination method in weak signal detection with Duffing oscillator and construction of detection statistics. Acta Physica Sinica, 2015, 64(6): 060503. doi: 10.7498/aps.64.060503
    [8] Shen Yun, Fu Ji-Wu, Yu Guo-Ping. Influence of gain on propagation properties of slow light in one-dimensional periodic structures. Acta Physica Sinica, 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [9] Liu Ya-Qing, Zhang Yu-Ping, Zhang Hui-Yun, Lü Huan-Huan, Li Tong-Tong, Ren Guang-Jun. Study on the gain characteristics of terahertz surface plasma in optically pumped graphene multi-layer structures. Acta Physica Sinica, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [10] Zhang Xuan-Ni, Zhang Chun-Min, Ai Jing-Jing. The signal-to-noise ratio of the quarter beam of wind imaging polarization interferometer. Acta Physica Sinica, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [11] Tian Xiang-You, Leng Yong-Gang, Fan Sheng-Bo. Parameter-adjusted stochastic resonance of first-order linear system. Acta Physica Sinica, 2013, 62(2): 020505. doi: 10.7498/aps.62.020505
    [12] Li Xiao-Li, Shang Ya-Xuan, Sun Jiang. Splitting of electromagnetically induced transparency window and appearing of gain due to radio frequency field. Acta Physica Sinica, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [13] Xu Xue-Mei, Dai Peng, Yang Bing-Chu, Yin Lin-Zi, Cao Jian, Ding Yi-Peng, Cao Can. Weak photoacoustic signal detection in photoacoustic cell. Acta Physica Sinica, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [14] Fan Sheng-Nan, Wang Bo, Qi Hui-Rong, Liu Mei, Zhang Yu-Lian, Zhang Jian, Liu Rong-Guang, Yi Fu-Ting, Ouyang Qun, Chen Yuan-Bo. Study on the performance of a high-gain gas electron multiplier-MicroMegas chamber. Acta Physica Sinica, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [15] Zheng Kui-Song, Wu Chang-Ying, Wan Guo-Bin, Wei Gao. Implementation of two-element antenna array with right/left-handed transmission line metamaterials. Acta Physica Sinica, 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [16] He Jing-Bo, Liu Zhong, Hu Sheng-Liang. Detection of weak signal based on the sea clutter scattering. Acta Physica Sinica, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [17] Cheng Nan, Huang Gang-Feng, Wang Jin-Dong, Wei Zheng-Jun, Guo Jian-Ping, Liao Chang-Jun, Liu Song-Hao. Analysis of single photon detector based on the reflection of coaxial cables. Acta Physica Sinica, 2010, 59(8): 5338-5344. doi: 10.7498/aps.59.5338
    [18] Shao Gong-Wang, Dai Ya-Jun, Jin Guo-Liang. Overlap factor between intensity profiles of signal and pump light and gain characteristics of Er-doped waveguide amplifier. Acta Physica Sinica, 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [19] Zhang Xiao-Dong, Yang He-Run, Duan Li-Min, Xu Hu-Shan, Hu Bi-Tao, Li Chun-Yan, Li Zu-Yu. Study on the count plateau, gas gain and energy resolution of the Micromegas detectors. Acta Physica Sinica, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [20] Jiang Yong-Liang, Zhao Bao-Zhen, Liang Xiao-Yan, Leng Yu-Xin, Li Ru-Xin, Xu Zhi-Zhan, Hu Xiao-Peng, Zhu Shi-Ning. High-gain degenerated optical parametric chirped-pulse amplification in periodically poled LiTaO3. Acta Physica Sinica, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
Metrics
  • Abstract views:  3439
  • PDF Downloads:  101
  • Cited By: 0
Publishing process
  • Received Date:  29 May 2023
  • Accepted Date:  28 July 2023
  • Available Online:  02 August 2023
  • Published Online:  05 October 2023

/

返回文章
返回
Baidu
map