搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二级级联式室内可见光通信光学接收天线设计

张逸伦 蓝天 高明光 赵涛 沈振民

引用本文:
Citation:

二级级联式室内可见光通信光学接收天线设计

张逸伦, 蓝天, 高明光, 赵涛, 沈振民

Design of two-cascade optical antenna for indoor visible light communication

Zhang Yi-Lun, Lan Tian, Gao Ming-Guang, Zhao Tao, Shen Zhen-Min
PDF
导出引用
  • 针对室内可见光通信系统的传统光学接收天线无法同时满足高增益和大视场的问题, 设计了一种二级级联式光学天线. 通过分析信噪比、通信速率与接收天线视场角的关系, 发现视场角为40°–60°的光学天线最适用于室内可见光通信系统. 通过光学仿真软件TracePro的模拟及计算, 给出了所设计的二级级联式光学天线的增益随信号光入射角的变化关系. 结果表明, 相较于传统接收天线, 二级级联式光学天线具有更好的光学性能, 视场角为菲涅耳透镜单独接收时的4 倍. 利用Matlab对二级级联式光学天线竖直向上时的接收功率分布进行仿真, 结果显示探测器接收到的信号功率提升效果明显, 平均值较直接探测时增大了7 dBm, 进一步证实该二级级联式光学天线适用于室内可见光通信系统.
    White light emitting diode (LED) is expected to replace the incandescent lamp and becomes the next generation of lighting source because of its long life expectancy, high tolerance to humidity, and low power consumption. It is proposed that for the indoor visible light communication system white LED should be used as both lighting source and base station for its properties of high brightness and high speed modulation. Indoor visible light communication has a very wide area of applications, but there is a lack of research on receiver optical antenna that functions as an energy concentrator so as to increase received power. In order to meet the needs of high gain and meanwhile large field of view of receiver optical antenna for indoor visible light communication, two-cascade optical antenna is designed. It is shown that the field of view from 40 to 60 degrees can meet the requirements for high speed communication by analyzing the relationship between signal-to-noise ratio and data rate of different fields of view. The performances of the traditional optical antenna of Fresnel lens and the compound parabolic concentrator are simulated and analyzed by TacrePro. The gains of the designed two-cascade optical antenna are discussed at different incident angles. The results show that two-cascade optical antenna has better performance than traditional receiver optical antenna. The distribution of received power of two-cascade optical antenna is analyzed by using Matlab. The received average power by using two-cascade optical antenna is about 7 dBm larger than that without any optical antenna. The designed optical antenna provides a field of view of 40 degrees and enough gain for indoor visible light communication system.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2013CB329202)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB329202).
    [1]

    Wang Z J, Li P L, Yang Z P, Guo Q L, Li X 2010 Chin. Phys. B 19 017801

    [2]

    Xie Z L, Zhang R, Fu D Y, Liu B, Xiu X Q, Hua X M, Zhao H, Chen P, Han P, Shi Y, Zheng Y D 2011 Chin. Phys. B 20 116801

    [3]

    Hu J, Du L, Zhuang Y Q, Bao J L, Zhou J 2006 Acta Phys. Sin. 55 1384 (in Chinese) [胡瑾, 杜磊, 庄奕琪, 包军林, 周江 2006 55 1384]

    [4]

    Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron 50 100

    [5]

    Ab-Rahman M S, Shuhaimi N I, Azizan L A, Hassan M R 2012 J. Comput. Sci. 8 141

    [6]

    Wang K, Nirmalathas A, Lim C, Skafidas E 2011 IEEE Photon. Tech. L 23 519

    [7]

    Matsumoto Y, Nakada H 2012 Electron. Commun. Jpn. 95 9

    [8]

    Xu N, Xu D T, Yang G, Sun X Y 2012 Chin. J. Quantum Electron. 29 629 (in Chinese) [徐宁, 徐丹彤, 杨庚, 孙晓芸 2012 量子电子学报29 629]

    [9]

    Burton A, Ghassemlooy Z, Rajbhandari S, Liaw S K 2014 Trans. Emerg. Telecommun. Technol. 25 591

    [10]

    Wang F, Sui C H, Ye B Q 2010 Opt. Instrum. 32 68 (in Chinese) [汪飞, 隋成华, 叶必卿 2010 光学仪器 32 68]

    [11]

    Kong M M, Liang Z C, Zhang G H 2012 Infrared and Laser Engineer 41 750 (in Chinese) [孔梅梅, 梁忠诚, 张国虎 2012 红外与激光工程 41 750]

    [12]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [13]

    Shen Z M 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [沈振民 2014 博士学位论文 (北京: 北京理工大学)]

    [14]

    Davis A, Kühnlenz F 2007 Opt. Photon. 2 52

    [15]

    Li X, Lan T, Wang Y, Wang L H 2015 Acta Phys. Sin. 64 024201 (in Chinese) [李湘, 蓝天, 王云, 王龙辉 2015 64 024201]

  • [1]

    Wang Z J, Li P L, Yang Z P, Guo Q L, Li X 2010 Chin. Phys. B 19 017801

    [2]

    Xie Z L, Zhang R, Fu D Y, Liu B, Xiu X Q, Hua X M, Zhao H, Chen P, Han P, Shi Y, Zheng Y D 2011 Chin. Phys. B 20 116801

    [3]

    Hu J, Du L, Zhuang Y Q, Bao J L, Zhou J 2006 Acta Phys. Sin. 55 1384 (in Chinese) [胡瑾, 杜磊, 庄奕琪, 包军林, 周江 2006 55 1384]

    [4]

    Komine T, Nakagawa M 2004 IEEE Trans. Consum. Electron 50 100

    [5]

    Ab-Rahman M S, Shuhaimi N I, Azizan L A, Hassan M R 2012 J. Comput. Sci. 8 141

    [6]

    Wang K, Nirmalathas A, Lim C, Skafidas E 2011 IEEE Photon. Tech. L 23 519

    [7]

    Matsumoto Y, Nakada H 2012 Electron. Commun. Jpn. 95 9

    [8]

    Xu N, Xu D T, Yang G, Sun X Y 2012 Chin. J. Quantum Electron. 29 629 (in Chinese) [徐宁, 徐丹彤, 杨庚, 孙晓芸 2012 量子电子学报29 629]

    [9]

    Burton A, Ghassemlooy Z, Rajbhandari S, Liaw S K 2014 Trans. Emerg. Telecommun. Technol. 25 591

    [10]

    Wang F, Sui C H, Ye B Q 2010 Opt. Instrum. 32 68 (in Chinese) [汪飞, 隋成华, 叶必卿 2010 光学仪器 32 68]

    [11]

    Kong M M, Liang Z C, Zhang G H 2012 Infrared and Laser Engineer 41 750 (in Chinese) [孔梅梅, 梁忠诚, 张国虎 2012 红外与激光工程 41 750]

    [12]

    Kahn J M, Barry J R 1997 Proc. IEEE 85 265

    [13]

    Shen Z M 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese) [沈振民 2014 博士学位论文 (北京: 北京理工大学)]

    [14]

    Davis A, Kühnlenz F 2007 Opt. Photon. 2 52

    [15]

    Li X, Lan T, Wang Y, Wang L H 2015 Acta Phys. Sin. 64 024201 (in Chinese) [李湘, 蓝天, 王云, 王龙辉 2015 64 024201]

  • [1] 赵华良, 彭红玲, 周旭彦, 张建心, 牛博文, 尚肖, 王天财, 曹澎. InP衬底上的双载流子倍增雪崩光电二极管结构设计.  , 2023, 72(19): 198502. doi: 10.7498/aps.72.20230885
    [2] 许锦, 郭洋宁, 罗宁宁, 李淑静, 史久林, 何兴道. 水体参数对受激布里渊散射阈值及增益的影响.  , 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [3] 彭星, 孔令豹. 基于室内可见光通信技术的新型两级光学接收天线设计与分析.  , 2018, 67(9): 094201. doi: 10.7498/aps.67.20172341
    [4] 王云, 蓝天, 倪国强. 室内可见光通信复合光学接收端设计与分析.  , 2017, 66(8): 084207. doi: 10.7498/aps.66.084207
    [5] 李湘, 蓝天, 王云, 王龙辉. 室内可见光通信系统中菲涅尔透镜接收天线的设计研究.  , 2015, 64(2): 024201. doi: 10.7498/aps.64.024201
    [6] 王云, 蓝天, 李湘, 沈振民, 倪国强. 复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析.  , 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [7] 沈云, 傅继武, 于国萍. 增益对一维周期结构慢光传输特性影响.  , 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [8] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究.  , 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [9] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究.  , 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [10] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现.  , 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [11] 赵建森, 张芝涛, 王健, 俞哲. 一种基于5—20 kHz交流激励的U形等离子体天线.  , 2012, 61(19): 195201. doi: 10.7498/aps.61.195201
    [12] 保石, 罗春荣, 赵晓鹏. S波段超材料完全吸收基板微带天线.  , 2011, 60(1): 014101. doi: 10.7498/aps.60.014101
    [13] 郑奎松, 吴昌英, 万国宾, 韦高. 复合左右手技术的二元阵天线的计算及测量.  , 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [14] 穆廷魁, 张淳民, 任文艺, 张霖, 祝宝辉. 偏振干涉成像光谱仪的视场展宽设计与分析.  , 2011, 60(7): 070704. doi: 10.7498/aps.60.070704
    [15] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性.  , 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [16] 朱忠奎, 罗春荣, 赵晓鹏. 一种新型的树枝状负磁导率材料微带天线.  , 2009, 58(9): 6152-6157. doi: 10.7498/aps.58.6152
    [17] 冉英华, 杨华军, 徐权, 谢康, 黄金. 卡塞格伦光学天线偏轴及性能分析.  , 2009, 58(2): 946-951. doi: 10.7498/aps.58.946
    [18] 张小东, 杨贺润, 段利敏, 徐瑚珊, 胡碧涛, 李春艳, 李祖玉. Micromegas探测器计数曲线、增益以及能量分辨特性的研究.  , 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [19] 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展, 胡小鹏, 祝世宁. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大.  , 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
    [20] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算.  , 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
计量
  • 文章访问数:  6921
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-10
  • 修回日期:  2015-03-09
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map