-
In the domain of integrated quantum photonics, the burgeoning superiority of lithium niobate’s second-order nonlinearity in electro-optic modulation makes thin-film lithium niobate a leading quantum photonic platform after silicon. To date, single-photon sources using thin-film lithium niobate has mainly adopted periodic polarization quasi-phase matching technology, which requires the preparation of complex electrodes for domain inversion in the waveguide to realize quasi-phase matching. This method inevitably introduces complexity, such as complex processing methods, enlarged polarization regions, and compromised integration density. With the development of quantum information technology, the ever-increasing degree of integration constantly creates new demands. Consequently, the development of a streamlined, high-efficiency quantum light source on a lithium niobate platform is a pressing issue. In this study, we propose a novel thin-film lithium niobate parametric down-conversion single-photon source based on mode dispersion phase matching theory. The strategy is different from conventional strategies that utilize periodic polarization to generate single-photon sources in thin-film lithium niobate devices. In contrast to traditional quasi-phase matching techniques that utilize the phase matching between pump fundamental mode light and parametric fundamental mode light, our method employs the phase matching between the pump light’s higher-order mode and the parametric light’s fundamental mode. The pump light’s higher-order mode is obtained by designing an asymmetric directional coupler. The device’s single-photon yield can attain
$3.8\times10^{7}$ /(s·mW), satisfying the requirements for optical quantum information processing. This innovative solution is expected to replace the traditional quasi-phase-matching single-photon sources, thus further promoting the study of optical quantum information based on thin-film lithium niobate chips.[1] Dowling J P, Milburn G J 2003 Philos. Trans. A. Math. Phys. Eng. Sci. 361 1655Google Scholar
[2] Flamini F, Spagnolo N, Sciarrino F 2019 Rep. Prog. Phys. 82 016001Google Scholar
[3] Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y 2014 Phys. Rev. Lett. 113 190501Google Scholar
[4] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L 2017 Nature 549 70Google Scholar
[5] Chi Y, Huang J, Zhang Z, Mao J, Zhou Z, Chen X, Zhai C, Bao J, Dai T, Yuan H 2022 Nat. Commun. 13 1166Google Scholar
[6] Lloyd S 1996 Science 273 1073Google Scholar
[7] Zhong H S, Deng Y H, Qin J, Wang H, Chen M C, Peng L C, Luo Y H, Wu D, Gong S Q, Su H 2021 Phys. Rev. Lett. 127 180502Google Scholar
[8] Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar
[9] Wang J, Paesani S, Ding Y, Santagati R, Skrzypczyk P, Salavrakos A, Tura J, Augusiak R, Mančinska L, Bacco D 2018 Science 360 285Google Scholar
[10] Qiang X G, Zhou X Q, Wang J W, Wilkes C M, Loke T, O'Gara S, Kling L, Marshall G D, Santagati R, Ralph T C 2018 Nat. Photonics 12 534Google Scholar
[11] Politi A, Matthews J C, O'brien J L 2009 Science 325 1221Google Scholar
[12] Peruzzo A, Lobino M, Matthews J C, Matsuda N, Politi A, Poulios K, Zhou X Q, Lahini Y, Ismail N, Wörhoff K 2010 Science 329 1500Google Scholar
[13] Laing A, Peruzzo A, Politi A, Verde M R, Halder M, Ralph T C, Thompson M G, O'Brien J L 2010 Appl. Phys. Lett. 97 211109Google Scholar
[14] Shadbolt P J, Verde M R, Peruzzo A, Politi A, Laing A, Lobino M, Matthews J C, Thompson M G, O'Brien J L 2012 Nat. Photonics 6 45Google Scholar
[15] Gerrits T, Thomas Peter N, Gates J C, Lita A E, Metcalf B J, Calkins B, Tomlin N A, Fox A E, Linares A L, Spring J B 2011 Phys. Rev. A 84 060301Google Scholar
[16] Carolan J, Harrold C, Sparrow C, Martín-López E, Russell N J, Silverstone J W, Shadbolt P J, Matsuda N, Oguma M, Itoh M 2015 Science 349 711Google Scholar
[17] Kuyken B, Leo F, Clemmen S, Dave U, Van Laer R, Ideguchi T, Zhao H, Liu X, Safioui J, Coen S 2017 Nanophotonics 6 377Google Scholar
[18] Alibart O, D'Auria V, De Micheli M, Doutre F, Kaiser F, LabontéL, Lunghi T, Picholle É, Tanzilli S 2016 J. Opt. 18 104001Google Scholar
[19] Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar
[20] Jin H, Liu F, Xu P, Xia J, Zhong M, Yuan Y, Zhou J, Gong Y, Wang W, Zhu S 2014 Phys. Rev. Lett. 113 103601Google Scholar
[21] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar
[22] Elkus B S, Abdelsalam K, Rao A, Velev V, Fathpour S, Kumar P, Kanter G S 2019 Opt. Express 27 38521Google Scholar
[23] Javid U A, Ling J, Staffa J, Li M, He Y, Lin Q 2021 Phys. Rev. Lett. 127 183601Google Scholar
[24] Zhao J, Ma C, Rüsing M, Mookherjea S 2020 Phys. Rev. Lett. 124 163603Google Scholar
[25] 张晨涛, 石小涛, 朱文新, 朱金龙, 郝向英, 金锐博 2022 71 204201Google Scholar
Zhang C T, Shi X T, Zhu W X, Zhu J L, Hao X Y, Jin R B 2022 Acta Phys. Sin. 71 204201Google Scholar
[26] Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar
[27] Donnelly J P, Haus H A, Molter L A 1988 J. Lightwave. Technol. 6 257Google Scholar
[28] Chrostowski L, Hochberg M 2015 Silicon Photonics Design: from Devices to Systems (Cambridge: Cambridge University Press) pp92–95
[29] Suhara T, Fujimura M 2003 Waveguide Nonlinear-optic Devices (Vol. 11) (New York: Springer Science & Business Media) pp41, 42
[30] Suhara T 2009 Laser. Photonics Rev. 3 370Google Scholar
[31] Suhara T, Kintaka H 2005 IEEE J. Quantum. Electron. 41 1203Google Scholar
-
图 1 波导结构截面图及单光子源器件结构示意图. 1)为Y分束器; 2)为非对称定向耦合器; 3)为模式色散相位匹配光子对源; 4)为上臂带有一个电热移相器的2 × 2定向耦合器. 建模采用的铌酸锂波导结构是侧壁倾角θ = 60°, h = 0.36 μm的条形波导, 材料模型为一致生长的铌酸锂[26]
Figure 1. Cross-sectional diagram of the waveguide structure and schematic illustration of the single-photon source device. 1) Y-splitter. 2) Asymmetric directional coupler. 3) Mode dispersion phase-matched photon pair source. 4) 2 × 2 directional coupler in the upper arm with an electrothermal phase shifter. The modeled lithium niobate waveguide structure has a sidewall angle θ = 60° and a height h = 0.36 μm, with the material model being uniformly grown lithium niobate[26]
图 2 (a) 775 nm泵浦光在
$ {\rm{TE}}_0 $ ,$ {\rm{TE}}_1 $ ,$ {\rm{TE}}_2 $ 模式下有效折射率随波导宽度的变化; (b)非对称定向耦合器的自由光谱范围以及模拟光场分布图Figure 2. (a) Effective refractive index variation curves for 775 nm pump light in
$ {\rm{TE}}_0 $ ,$ {\rm{TE}}_1 $ and$ {\rm{TE}}_2 $ modes as a function of waveguide width; (b) free spectral range and simulated optical field distribution diagram of asymmetric directional coupler图 3 (a) 775 nm的
$ {\rm{TE}}_0 $ ,$ {\rm{TE}}_1 $ ,$ {\rm{TE}}_2 $ 模式光和1550 nm的$ {\rm{TE}}_0 $ 模式光的有效折射率随波导宽度的变化; (b)输出参量光光谱图Figure 3. (a) Variation curves of effective refractive index for 775 nm
$ {\rm{TE}}_0 $ ,$ {\rm{TE}}_1 $ ,$ {\rm{TE}}_2 $ mode light and 1550 nm$ {\rm{TE}}_0 $ mode light as a function of waveguide width; (b) output parametric light spectrum diagram图 5 波导侧边倾角为60°的条形波导在高度为300—600 nm范围内、不同波导宽度情况下, 775 nm
${\rm{TE}}_2$ 泵浦光与1550 nm${\rm{TE}}_0$ 参量光的有效折射率扫描数据Figure 5. Effective refractive index scan data for 775 nm
${\rm{TE}}_2$ pump light and 1550 nm${\rm{TE}}_0$ parametric light in the case of different waveguide widths for strip waveguides with a sidewall angle of 60° and heights ranging from 300 nm to 600 nm -
[1] Dowling J P, Milburn G J 2003 Philos. Trans. A. Math. Phys. Eng. Sci. 361 1655Google Scholar
[2] Flamini F, Spagnolo N, Sciarrino F 2019 Rep. Prog. Phys. 82 016001Google Scholar
[3] Tang Y L, Yin H L, Chen S J, Liu Y, Zhang W J, Jiang X, Zhang L, Wang J, You L X, Guan J Y 2014 Phys. Rev. Lett. 113 190501Google Scholar
[4] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J, Liu W Y, Cai W Q, Yang M, Li L 2017 Nature 549 70Google Scholar
[5] Chi Y, Huang J, Zhang Z, Mao J, Zhou Z, Chen X, Zhai C, Bao J, Dai T, Yuan H 2022 Nat. Commun. 13 1166Google Scholar
[6] Lloyd S 1996 Science 273 1073Google Scholar
[7] Zhong H S, Deng Y H, Qin J, Wang H, Chen M C, Peng L C, Luo Y H, Wu D, Gong S Q, Su H 2021 Phys. Rev. Lett. 127 180502Google Scholar
[8] Wang J, Sciarrino F, Laing A, Thompson M G 2020 Nat. Photonics 14 273Google Scholar
[9] Wang J, Paesani S, Ding Y, Santagati R, Skrzypczyk P, Salavrakos A, Tura J, Augusiak R, Mančinska L, Bacco D 2018 Science 360 285Google Scholar
[10] Qiang X G, Zhou X Q, Wang J W, Wilkes C M, Loke T, O'Gara S, Kling L, Marshall G D, Santagati R, Ralph T C 2018 Nat. Photonics 12 534Google Scholar
[11] Politi A, Matthews J C, O'brien J L 2009 Science 325 1221Google Scholar
[12] Peruzzo A, Lobino M, Matthews J C, Matsuda N, Politi A, Poulios K, Zhou X Q, Lahini Y, Ismail N, Wörhoff K 2010 Science 329 1500Google Scholar
[13] Laing A, Peruzzo A, Politi A, Verde M R, Halder M, Ralph T C, Thompson M G, O'Brien J L 2010 Appl. Phys. Lett. 97 211109Google Scholar
[14] Shadbolt P J, Verde M R, Peruzzo A, Politi A, Laing A, Lobino M, Matthews J C, Thompson M G, O'Brien J L 2012 Nat. Photonics 6 45Google Scholar
[15] Gerrits T, Thomas Peter N, Gates J C, Lita A E, Metcalf B J, Calkins B, Tomlin N A, Fox A E, Linares A L, Spring J B 2011 Phys. Rev. A 84 060301Google Scholar
[16] Carolan J, Harrold C, Sparrow C, Martín-López E, Russell N J, Silverstone J W, Shadbolt P J, Matsuda N, Oguma M, Itoh M 2015 Science 349 711Google Scholar
[17] Kuyken B, Leo F, Clemmen S, Dave U, Van Laer R, Ideguchi T, Zhao H, Liu X, Safioui J, Coen S 2017 Nanophotonics 6 377Google Scholar
[18] Alibart O, D'Auria V, De Micheli M, Doutre F, Kaiser F, LabontéL, Lunghi T, Picholle É, Tanzilli S 2016 J. Opt. 18 104001Google Scholar
[19] Zhang M, Wang C, Cheng R, Shams-Ansari A, Lončar M 2017 Optica 4 1536Google Scholar
[20] Jin H, Liu F, Xu P, Xia J, Zhong M, Yuan Y, Zhou J, Gong Y, Wang W, Zhu S 2014 Phys. Rev. Lett. 113 103601Google Scholar
[21] Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M 2018 Nature 562 101Google Scholar
[22] Elkus B S, Abdelsalam K, Rao A, Velev V, Fathpour S, Kumar P, Kanter G S 2019 Opt. Express 27 38521Google Scholar
[23] Javid U A, Ling J, Staffa J, Li M, He Y, Lin Q 2021 Phys. Rev. Lett. 127 183601Google Scholar
[24] Zhao J, Ma C, Rüsing M, Mookherjea S 2020 Phys. Rev. Lett. 124 163603Google Scholar
[25] 张晨涛, 石小涛, 朱文新, 朱金龙, 郝向英, 金锐博 2022 71 204201Google Scholar
Zhang C T, Shi X T, Zhu W X, Zhu J L, Hao X Y, Jin R B 2022 Acta Phys. Sin. 71 204201Google Scholar
[26] Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319Google Scholar
[27] Donnelly J P, Haus H A, Molter L A 1988 J. Lightwave. Technol. 6 257Google Scholar
[28] Chrostowski L, Hochberg M 2015 Silicon Photonics Design: from Devices to Systems (Cambridge: Cambridge University Press) pp92–95
[29] Suhara T, Fujimura M 2003 Waveguide Nonlinear-optic Devices (Vol. 11) (New York: Springer Science & Business Media) pp41, 42
[30] Suhara T 2009 Laser. Photonics Rev. 3 370Google Scholar
[31] Suhara T, Kintaka H 2005 IEEE J. Quantum. Electron. 41 1203Google Scholar
Catalog
Metrics
- Abstract views: 4720
- PDF Downloads: 219
- Cited By: 0