Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Citation:

Research progress of lock-in amplifiers

Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun
PDF
HTML
Get Citation
  • The lock-in amplifier can perform high-precision measurement in both time and amplitude dimensions, so that it becomes a key component of instrumental system for precision measurement and control. This article overviews the concept, technology, and application of phase-locked amplifiers as a guide. It first explains the development and evolution of phase-locked amplifiers of analog, digital, and virtual phase-locked amplifiers, demonstrating their relationship and differences. Then, it classifies phase-locked amplifiers from a mathematical perspective based on the order and type of phase-locked loops. Subsequently, the testing process and metrological calibration progress of the main performance of phase-locked amplifiers, such as amplitude, frequency, and phase noise, are introduced. The conversion relationship between key indicators such as phase noise, time-domain jitter, Allan variance, and the coupling relationship with amplitude noise are discussed. Finally, the application forms and effects of phase-locked amplifiers in the fields of spectral enhancement, impedance analysis, magnetic measurement, microscopic imaging, and space exploration are listed. Through some new applications, the prospects of their transition from scientific instruments to industrial and even civilian products through intelligent computing, precise IoT, and other means are briefly given.

    Erratum: Research progress of lock-in amplifiers [Acta Phys. Sin. 2023, 72(22): 224206]

    Guo Zhong-Kai, Li Yong-Gang, Yu Bo-Cheng, Zhou Shi-Chao, Meng Qing-Yu, Lu Xin-Xin, Huang Yi-Fan, Liu Gui-Peng, Lu Jun. Erratum: Research progress of lock-in amplifiers [Acta Phys. Sin. 2023, 72(22): 224206]. Acta Phys. Sin., 2023, 72(24): 249901. doi: 10.7498/aps.72.249901
      Corresponding author: Lu Jun, lujun@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFF0701000).
    [1]

    陆俊 2020 物理 49 472Google Scholar

    Lu J 2020 Physics 49 472Google Scholar

    [2]

    Best R E 2003 Phase-locked Loops Design, Simulation and Applications (New York: McGraw-Hill) pp151–277

    [3]

    Gardner F M 2005 Phaselock Techniques (Hoboken: Wiley Interscience) pp6–96

    [4]

    Banerjee D 2006 PLL Performance, Simulation, and Design ( Dallas: Texas Instruments) pp9–243

    [5]

    杜勇 2016 锁相环技术原理及FPGA实现 (北京: 电子工业出版社) 第89—262页

    Du Y 2016 Principle and FPGA Implementation of Phase Locked Loop Technology (Beijing: Publishing House of Electronics Industry) pp89–262

    [6]

    远坂俊昭 2006 锁相环(PLL)电路设计与应用 (北京: 科学出版社) 第31—105页

    YuanBan J Z 2006 Design and Application of Phase Locked Loop (PLL) Circuit (Beijing: Science Press) pp31–105

    [7]

    田昭武 1984 电化学研究方法 (北京: 科学出版社) 第395—396页

    Tian Z W 1984 Electrochemical Methods (Beijing: Science Press) pp395–396

    [8]

    高晋占 2004 微弱信号检测 (北京: 清华大学出版社) 第1—36页

    Gao J Z 2004 Weak Signal Detection (Beijing: Tsinghua University Press) pp1–36

    [9]

    Meade M L 1983 Lock-In Amplifiers: Principles and Applications (London: Peter Peregrinus) pp7–147

    [10]

    De Bellescize 1933 U.K. Patent GB19310031 [1933-05-18

    [11]

    王福昌 1996 锁相技术 (武汉: 华中理工大学出版社) 第3—137页

    Wang F C 1996 Phase-locked Technology (Wuhan: Huazhong University of Technology Press) pp3–137

    [12]

    Gaspar J, Chen S F, Gordillo A, Hepp M, Ferreyra P, Marques C 2004 Microprocess. Microsyst. 28 157Google Scholar

    [13]

    Zurich-Instrument https://docs.zhinst.com/overview [2023-8-9

    [14]

    Liquid-Instrument https://www.liquidinstruments.com/products/hardware-platforms/mokupro https://www.thinksrs.com/downloads/man.html [2023-8-9

    [15]

    Stanford-Research-Systems https://www.thinksrs.com/downloads/man.html [2023-8-9

    [16]

    Sine Scientific Instruments https://www.ssi-instrument.com/products/LIA.html [2023-8-9

    [17]

    Huang K, Geng Y Y, Zhang X B, Chen D H, Cai Z G, Wang M, Zhu Z, Wang Z X 2019 Sensors 19 3519Google Scholar

    [18]

    NF株式会社 http://www.nfcorp.com.cn/pro/mi/loc/loc/li5600 [2023-8-9]

    NF Corporation http://www.nfcorp.com.cn/pro/mi/loc/loc/li5600 [2023-8-9

    [19]

    国仪量子 https://www.cigtek.com/products. html [2023-8-9]

    CIQTEK https://www.cigtek.com/products.html [2023-8-9

    [20]

    南京鸿宾电子 https://www.ndwshb.com/product/105.html [2023-8-9]

    Nanjing Hongbin https://www.ndwshb.com/product/105.html [2023-8-9

    [21]

    AMETEK https://www.ameteksi.com/products/lock-in-amplifers/7265-dual-phase-lock-in-amplifer [2023-8-9

    [22]

    Chen C 2004 Proc. Natl. Acad. Sci. 101 5303Google Scholar

    [23]

    张勇, 李睿, 刘君华 1998 电测与仪表 35 30

    Zhang Y, Li R, Liu J H 1998 Electr. Meas. Instrum. 35 30

    [24]

    Bobalo Y, Bondariev A, Altunin S, Kiselychnyk M, Maksymiv I 2018 International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering Lviv-Slavske, Ukraine, February 20–24, 2018

    [25]

    Lu J, Pan D A, Bai Y, Qiao L 2008 Meas. Sci. Technol. 19 045702Google Scholar

    [26]

    陆俊 https://www.instrument.com.cn/download/shtml/062888.shtml [2008-8-9]

    Lu J https://www.instrument.com.cn/download/shtml/062888.shtml [2008-8-9

    [27]

    Stimpson G A, Skilbeck M S, Patel R L, Green B L, Morley G W 2019 Rev. Sci. Instrum. 90 094701Google Scholar

    [28]

    Wang Z, Shi X, Wang W, Cai W 2023 IEEE Trans. Instrum. Meas. 72 1Google Scholar

    [29]

    Lu J 2020 Rev. Sci. Instrum. 91 075106Google Scholar

    [30]

    《手册》编写组 2017 数学手册 (北京: 高等教育出版社)

    Handbook Writing Group 2017 Mathematical Manual (Beijing: Higher Education Press

    [31]

    Ziemer R, Tranter W 2015 Principles of Communications Systems, Modulation, and Noise (Hoboken: Wiley) pp184– 195

    [32]

    Wullch D, Bar M 1990 Int. J. Circuit Theory Appl. 18 135Google Scholar

    [33]

    Ugarte M, Carlosena A 2015 Circuits Syst. Signal Process. 34 3395Google Scholar

    [34]

    Kudrewicz J, Wasowicz S 2007 Equations of Phase-Locked Loops Dynamics on the Circle, Torus and Cylinder (New Jersey: World Scientific) pp9–123

    [35]

    Kittel P 1977 Rev. Sci. Instrum. 48 1214Google Scholar

    [36]

    原力超导 https://eastfs.com/glpmd [2003-8-9]

    Force superconductivity https://eastfs.com/glpmd [2003-8-9

    [37]

    Rubiola E 2008 Phase Noise and Frequency Stability in Oscillators (London: Cambridge University Press) pp1–135

    [38]

    Schwartz M 1970 Information Transmission Modulation and Noise—A Unified Approach to Communication System (New York: McGRAW-Hill) pp390–570

    [39]

    Bodson M 2005 Int. J. Adapt. Control Signal Process. 19 67Google Scholar

    [40]

    陆俊, 沈保根, 邵晓萍 2018 中国专利 201510182065.7 [2018-01-26]

    Lu J, Shen B G, Shao X P 2018 CHN Patent 201510182065.7 [2018-01-26

    [41]

    张靖悉, 胡勇, 潘柳2020锁相放大器校准规范

    Zhang J X, Hu Y, Pan L 2020 Calibration Specification for Lock-in Amplifiers

    [42]

    大恒新纪元科技股份有限公司 2022 精密大带宽锁相放大器企业标准

    Daheng New Era Technology Co., Ltd 2022 Enterprise Standards for Broadband High Precision Lock-in Amplifiers

    [43]

    王彪, 张江涛, 李艳强, 谷扬, 潘仙林 2012 电测与仪表 49 170

    Wang B, Zhang J T, Li Y Q, Gu Y, Pan X L 2012 Electr. Meas. Instrum. 49 170

    [44]

    Cultrera A, Corminboeuf D, D’Elia V, Tran N T M, Callegaro L, Ortolano M 2021 Metrologia 58 025001Google Scholar

    [45]

    Jia Z S, Liu Z Y, Wang L, He Q, Huang H T, Liu L Y 2018 Measurement 125 606Google Scholar

    [46]

    陆祖良, 杨雁, 黄璐, 王磊 2019 计量学报 40 319

    Lu Z L, Yang Y, Huang L, Wang L 2019 Acta Metrologica Sinica 40 319

    [47]

    陆祖良 2021 计量学报 42 913

    Lu Z L 2021 Acta Metrologica Sinica 42 913

    [48]

    Van B, Herold G 2014 Am. J. Phys. 82 785Google Scholar

    [49]

    Arora H, Klemmer N, Morizio J C, Wolf P D 2005 IEEE Trans. Circuits Syst. Regul. Pap. 52 379Google Scholar

    [50]

    Demir A 2006 IEEE Trans. Circuits Syst. Regul. Pap. 53 1869Google Scholar

    [51]

    Goldman S J 2007 Phase-Locked Loops Engineering Handbook for Integrated Circuits (Norwood: Artech House) pp5–161

    [52]

    Bondariev A P, Altunin S I 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) Odessa, September 11–15, 2017

    [53]

    Eulalia B, Luca D, Francesco P, Sergio R, Ioan T 2020 Acta Imeko 9 52Google Scholar

    [54]

    刘河山 2015 博士学位论文 (北京: 中国科学院大学)

    Liu H S 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [55]

    Shaddock D, Ware B, Halverson P G, Spero R E, Klipstein B 2006 Laser Interferometer Space Antenna: 6th International LISA Symposium Greenbelt, Maryland, USA, June 19–23, 2006

    [56]

    Cervantes F G, Heinzel G, Marín A F G, Wand V, Steier F, Jennrich O, Danzmann K 2007 Appl. Opt. 46 4541Google Scholar

    [57]

    Gerberding O, Sheard B, Bykov I, Kullmann J, Delgado J J E, Danzmann K, Heinzel G 2013 Classical Quantum Gravity 30 235029Google Scholar

    [58]

    Libbrecht K G, Black E D, Hirata C M 2003 Am. J. Phys. 71 1208Google Scholar

    [59]

    Sterczewski L A, Grzelczak M P, Plinski E F 2016 Rev. Sci. Instrum. 87 014702Google Scholar

    [60]

    Deninger A J, Göbel T, Schönherr D, Kinder T, Roggenbuck A, Köberle M, Lison F, Müller-Wirts T, Meissner P 2008 Rev. Sci. Instrum.79 044702Google Scholar

    [61]

    Zhang Z, Liu Y, Zhu X 2021 J. Phys. Conf. Ser. 1865 022010Google Scholar

    [62]

    Balgos M H, Hayazawa N, Tani M, Tanaka T 2023 Rev. Sci. Instrum. 94 043002Google Scholar

    [63]

    Ardekani H, Wilmington R L, Vutukuru M, Chen Z, Brandt R, Swan A, Gundogdu K 2021 Rev. Sci. Instrum. 92 104706Google Scholar

    [64]

    Kierzek M, Deal P E, Miller E W, Mukherjee S, Wachten D, Baumann A, Kaupp U B, Strünker T, Brenker C 2021 eLife 10 63129Google Scholar

    [65]

    陆俊, 杜昱光, 王倬, 张琛, 赵雪, 李国强, 谭广文, 竺晓山, 丁玮 2023 中国专利 202010361964.4 [2023-04-21]

    Lu J, Du Y G, Wang Z, Zhang C, Zhao X, Li G Q, Tan G W, Zhu X S, Ding W 2020 CHN Patent 202010361964.4 [2023-04-21

    [66]

    Sarra A, Stanchieri G D P, De M, Bordi F, Postorino P, Palange E 2021 IEEE Trans. Biomed. Circuits Syst. 15 177Google Scholar

    [67]

    Song X, Jin Y, Zhang X, Yu Y, Zhang D L 2009 Rev. Sci. Instrum. 80 086104Google Scholar

    [68]

    Song D, Yang W, Zhu J, Bai M, Liu Y 2022 J. Supercond. Novel Magn. 35 95Google Scholar

    [69]

    Barnard A W, Mikheev E, Finney J, Hiller H S, Goldhaber-Gordon D 2023 Rev. Sci. Instrum. 94 013902Google Scholar

    [70]

    邓荣, 江国栋 2013 电测与仪表 50 105

    Deng R, Jiang G D 2013 Electr. Meas. Instrum. 50 105

    [71]

    宋改青, 董有尔 2006 中国测试技术 32 78

    Song G Q, Dong Y E 2006 China Meas. Technol. 32 78

    [72]

    Tang T, Liu X, Yuan Y, Kiya R, Zhang T, Yang Y, Suetsugu S, Yamazaki Y, Ota N, Yamamoto K, Kamikubo H, Tanaka Y, Li M, Hosokawa Y, Yalikun Y 2023 Sens. Actuators, B 374 132698Google Scholar

    [73]

    Sandoval B, Janićijević Ž, Palestina R, et al. 2023 ACS Sens. 8 576Google Scholar

    [74]

    Kitta K, Sakamoto M, Hayakawa K, Nukazuka A, Kano K, Yamamoto T 2023 ACS Omega 8 14684Google Scholar

    [75]

    苏少奎 2019 低温物性及测量: 一个实验技术人员的理解合经验总结 (北京: 科学出版社)

    Su S K 2019 Low Temperature Physical Properties and Measurement: An Experimental Technician’s Understanding and Experience Summary (Beijing: Science Press

    [76]

    Carminati M, Ferrari G, Guagliardo F, Sampietro M 2011 Sens. Actuators, A 172 117Google Scholar

    [77]

    陆俊, 沈保根, 邵晓萍 2015 中国专利 201210081375.6 [2015-02-02]

    Lu J, Shen B G, Shao X P 2015 CHN Patent 201210081375.6 [2015-02-02

    [78]

    Heng X, Wei K, Zhao T, Xu Z, Cao Q, Huang X, Zhai Y, Ye M, Quan W 2023 IEEE Trans. Instrum. Meas. 72 1Google Scholar

    [79]

    Li J J, Du P C, Fu J Q, Wang X T, Zhou Q, Wang R Q 2019 Chin. Phys. B 28 040703Google Scholar

    [80]

    詹文山 1982 物理 12 732

    Zhan W S 1982 Physics 12 732

    [81]

    Pu Y, Zhao H, Murayama T, Tonthat L, Okita K, Watanabe Y, Yabukami S 2023 J. Magn. Soc. Jpn. 47 66Google Scholar

    [82]

    Meng Z, He X, Li Y, Huang J, Chen D, Wang Z 2023 IEEE Sens. J. 23 16123Google Scholar

    [83]

    Zhang Z, Xu Z, He J, Lu J 2022 IEEE Trans. Instrum. Meas. 71 1006009Google Scholar

    [84]

    Roos W, Hempel K A, Voigt C, Dederichs H, Schippan R 1980 Rev. Sci. Instrum. 51 612Google Scholar

    [85]

    Chen J, Xi X, Wang S, Lu J, Guo C, Wang W, Liu E, Wang W, Liu L, Wu G 2016 Rev. Sci. Instrum. 87 043902Google Scholar

    [86]

    陆俊, 郗学奎, 王利晨, 蒋建旺 2022 中国专利 202210373018.0 [2022-04-11]

    Lu J, Chi X K, Wang L C, Jiang J W 2022 CHN Patent 202210373018.0 [2022-04-11

    [87]

    Hayek J N, Herreño-Fierro C A, Patiño E J 2016 Rev. Sci. Instrum. 87 103113Google Scholar

    [88]

    Lu J, Pan D A, Bai Y, Su Y J, Qiao L J 2008 IEEE Trans. Magn. 44 2127Google Scholar

    [89]

    Drobac D, Marohnic Z, Zivkovic I, Prester M 2013 Rev. Sci. Instrum.84 054708Google Scholar

    [90]

    Krishnan R V, Banerjee A 1999 Rev. Sci. Instrum. 70 85Google Scholar

    [91]

    Harcombe D M, Ruppert M G, Fleming A J 2020 Beilstein J. Nanotechnol. 11 76Google Scholar

    [92]

    Shi Y, Lu Q 2012 Microsc. Microanal. 18 1016Google Scholar

    [93]

    刘凡微, 陈思丹, 张嘉未, 陈欣中, 毛寒青, 黄思思, 陈曦 2022 电子显微学报 41 627

    Liu F W, Chen S D, Zhang J W, Chen X Z, Mao H Q, Huang S S, Chen X 2022 J. Chin. Electron Microsc. Soc. 41 627

    [94]

    Li X, Sun J, Jin L, Shangguan Y, Chen K, Qin H 2023 Opt. Express 31 19754Google Scholar

    [95]

    Leung M S, Stupian G W 1986 Appl. Surf. Sci. 25 435Google Scholar

    [96]

    徐欣, 谈宜东, 穆衡霖, 李岩, 王加刚, 金景峰 2023 激光与光电子学进展 60 0312006Google Scholar

    Xu X, Tan Y D, Mu H L, Li Y, Wang J G, Jin J F 2023 Laser OptoElectron. Prog. 60 0312006Google Scholar

    [97]

    Finneran I A, Welsch R, Allodi M A, Miller I I I, Blake G A 2017 J. Phys. Chem. Lett. 8 4640Google Scholar

    [98]

    Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, Zeng H 2020 ACS Photonics 7 49Google Scholar

    [99]

    Jain P, Priya P, Ram T V S, Parikh K S, Bandi T N 2021 Rev. Sci. Instrum. 92 124705Google Scholar

    [100]

    Slim J, Nikolaev N, Rathmann F, Wirzba A, Zurek M 2021 Phys. Rev. Accel. Beams 2 4Google Scholar

    [101]

    Boss J, Cujia K, Zopes J, Degen C 2017 Science 356 837Google Scholar

    [102]

    Lu J 2021 A Reconfigurable Electrical Circuit Auto-Processing Method for Direct Electromagnetic Inversion, As a Chapter in Intelligent Computing and Block Chain (Singapore: Springer Nature) pp190–203

    [103]

    Jung S M 2016 Ph. D. Dissertation (Tucson: The University of Arizona

    [104]

    Kaptein M, Van E, Iannuzzi D, Braunstein L A 2017 Plos One 12 e0174182Google Scholar

    [105]

    Golestan S, Guerrero J M, Vasquez J C 2017 IEEE Trans. Power Electron. 32 9013Google Scholar

    [106]

    Uzzaman T, Kim U, Choi W 2022 IEEE Access 10 32870Google Scholar

    [107]

    Neunteufel D, Grebien S, Arthaber H 2022 Sensors 22 2663Google Scholar

    [108]

    Aguirre J, Medrano N, Calvo B, Celma S 2011 IEEE Sensors Conference Limerick, Ireland, October 28–31, 2011 6127317

  • 图 1  典型锁相放大器原理图

    Figure 1.  Schematic diagram of a typical lock-in amplifier.

    图 2  锁相环、信号幅度与锁相放大器作为关键词的文献关键词聚类分析图

    Figure 2.  Literature keyword clustering plot with phase-locked loop, signal amplitude and lock-in amplifier as keywords.

    图 3  锁相环与锁相放大器结构关联与差异示意图

    Figure 3.  Schematic diagram of structural correlation and difference between phase-locked loop and lock-in amplifier.

    图 4  数字锁相环中的核心器件用数字电路实现

    Figure 4.  Primary components in a digital lock-in amplifier are realized using digital circuits.

    图 5  虚拟锁相放大器中由CPU等指令工作流完成所有运算

    Figure 5.  In the virtual lock-in amplifier, all computations are accomplished by the CPU instruction workflow.

    图 6  模拟、数字与虚拟锁相放大器的分类标准图示及说明

    Figure 6.  Schematic description of classification criteria for analog, digital and virtual lock-in amplifiers.

    图 7  锁相环的型与阶分类以及典型结构功能与表达式列举示意图

    Figure 7.  Schematic diagram of the type and order classification of phase-locked loops and the enumeration of typical structural functions and expressions.

    图 8  锁相放大器的典型测试系统各部分连接关系图

    Figure 8.  Illustration of a typical test system for lock-in amplifiers.

    图 9  锁相放大器的幅度、频率与相位测量不确定度性能测试流程图

    Figure 9.  Flow chart of evaluation process for lock-in amplifiers, to obtain performance on measuring amplitude, frequency and phase.

    图 10  锁相放大器的诸多噪声抑制性能及其相互转换关系示意图

    Figure 10.  Various indicators of noise suppression properties and their relationship for evaluating lock-in amplifiers.

    图 11  锁相放大器用于光谱信噪比增强的两种光路图 (a)斩波器调制; (b)高速电控开关

    Figure 11.  Lock-in amplifier is used to enhance the spectral signal-to-noise ratio in optical measurement via two kind of modulations: (a) Chopper modulation; (b) high speed electronic control switch.

    图 12  运用锁相放大器进行阻抗测量的几种典型场景电路 (a)电池内阻测量[70]; (b)生物电阻抗在微流控中监测运动[72]; (c)超导电阻测量[68]; (d)精密电容监控[76]

    Figure 12.  Several typical application scenes with circuits for impedance measurement using Lock-in amplifier: (a) Battery internal resistance measurement[70]; (b) bioimpedance for movement monitoring in microfluidic channels[72]; (c) superconducting resistance measurement[68]; (d) precision capacitor monitoring[76].

    图 13  几种典型应用锁相放大器开展的磁测量场景示意图 (a)基于原子磁共振的磁强计[79]; (b)振动样品磁强计测量直流磁矩[83]; (c)交流磁化率仪; (d)动态磁致伸缩测量[85]

    Figure 13.  Schematic diagrams of typical magnetic measurements carried out by lock-in amplifier: (a) Magnetometer based on atomic magnetic resonance[79]; (b) the vibrating sample magnetometer measures the DC magnetic moment[83]; (c) AC magnetic susceptibility measurement; (d) dynamic magnetostriction measurement[85].

    图 14  几种用到锁相放大器的显微成像系统 (a)原子力显微镜[92]; (b)近场光谱显微镜[94]; (c)扫描俄歇电子显微镜[95]

    Figure 14.  Several microscopic imaging systems using lock-in amplifier: (a) Atomic force microscopy[92]; (b) near field spectroscopic microscope[94]; (c) scanning Auger electron microscope[95].

    图 15  激光外差干涉采取的两种运用锁相反馈的光路 (a)单激光源输出相位可控的一对激光束; (b)主从双激光源输出一对激光束

    Figure 15.  Laser heterodyne interference two optical paths using phase-locked feedback: (a) A pair of laser beams with controllable phase coherence from a single Laser; (b) the master-slave dual light source outputs a pair of laser beams.

    表 1  国内外目前锁相放大器产品性能指标的对比

    Table 1.  Comparison of performance for current available lock-in amplifier products around the world.

    地区 品牌 型号 工作频率范围 最大输出数据率 相位噪声 电压噪声/
    (nV·Hz–1/2)
    动态储备
    /dB
    推出年份
    国外 Standford SR830 $1\ {\rm{mHz}} — 102\ {\rm{kHz}}$ 256 kSa/s 87 μrad 6 100 1980
    Research (美国) SR865A $1\ {\rm{mHz}} — 4\ {\rm{MHz}}$ 1.25 MSa/s 1.7 μrad 2.5 120 2015
    Zurich HF2LI $\rm{DC} — 50\ {\rm{MHz}}$ 0.5 MSa/s >17 nrad 5 120 2008
    Instrument UHFLI $\rm{DC} — 600\ {\rm{MHz}}$ 1.6 MSa/s (LAN) >17 nrad 4 100 2013
    (瑞士) SHFLI $\rm{DC} — 8.5\ {\rm{GHz}}$ 1.6 MSa/s (LAN) >17 nrad 4 100 2022
    Liquid Moku:Lab $1\ {\rm{kHz}} — 200\ {\rm{MHz}}$ 1 MSa/s 1 nrad·Hz–1/2 30 120 2017
    Instrument (澳洲) Moku:Pro $1\ {\rm{kHz}} — 300\ {\rm{MHz}}$ 10 MSa/s 1 nrad·Hz–1/2 20 120 2021
    AMETEK
    (美国)
    Signal $1\ {\rm{mHz}} —250\ {\rm{kHz}}$ 1 MSa/s (典型) 1.7 μrad 5 100—120 1999
    Recovery 7265
    NF(日本) LI5660 $0.5\ \rm{\; Hz} — 11\ {\rm{MHz}}$ 1.5 MSa/s 17 μrad 4.5 100 2018
    国内 赛恩科仪 OE1022 $10\ \text{μ} {\rm{Hz}} — 250\ {\rm{kHz}}$ 1 MSa/s > 17 nrad 2.5 120 2012
    OE2041 $10\ \text{μ} {\rm{Hz}} — 60\ {\rm{MHz}}$ 1 MSa/s > 17 nrad 2.5 120 2020
    国仪量子 LIA001M ${\mathrm{DC}} — 1\ {\rm{MHz}}$ N.A. > 170 nrad 2.5 120 2021
    南京鸿宾 HB293(JD-1) $1\ \rm{\; Hz} — 100\ {\rm{kHz}}$ N.A. N.A. 3 140 ~1980
    DownLoad: CSV
    Baidu
  • [1]

    陆俊 2020 物理 49 472Google Scholar

    Lu J 2020 Physics 49 472Google Scholar

    [2]

    Best R E 2003 Phase-locked Loops Design, Simulation and Applications (New York: McGraw-Hill) pp151–277

    [3]

    Gardner F M 2005 Phaselock Techniques (Hoboken: Wiley Interscience) pp6–96

    [4]

    Banerjee D 2006 PLL Performance, Simulation, and Design ( Dallas: Texas Instruments) pp9–243

    [5]

    杜勇 2016 锁相环技术原理及FPGA实现 (北京: 电子工业出版社) 第89—262页

    Du Y 2016 Principle and FPGA Implementation of Phase Locked Loop Technology (Beijing: Publishing House of Electronics Industry) pp89–262

    [6]

    远坂俊昭 2006 锁相环(PLL)电路设计与应用 (北京: 科学出版社) 第31—105页

    YuanBan J Z 2006 Design and Application of Phase Locked Loop (PLL) Circuit (Beijing: Science Press) pp31–105

    [7]

    田昭武 1984 电化学研究方法 (北京: 科学出版社) 第395—396页

    Tian Z W 1984 Electrochemical Methods (Beijing: Science Press) pp395–396

    [8]

    高晋占 2004 微弱信号检测 (北京: 清华大学出版社) 第1—36页

    Gao J Z 2004 Weak Signal Detection (Beijing: Tsinghua University Press) pp1–36

    [9]

    Meade M L 1983 Lock-In Amplifiers: Principles and Applications (London: Peter Peregrinus) pp7–147

    [10]

    De Bellescize 1933 U.K. Patent GB19310031 [1933-05-18

    [11]

    王福昌 1996 锁相技术 (武汉: 华中理工大学出版社) 第3—137页

    Wang F C 1996 Phase-locked Technology (Wuhan: Huazhong University of Technology Press) pp3–137

    [12]

    Gaspar J, Chen S F, Gordillo A, Hepp M, Ferreyra P, Marques C 2004 Microprocess. Microsyst. 28 157Google Scholar

    [13]

    Zurich-Instrument https://docs.zhinst.com/overview [2023-8-9

    [14]

    Liquid-Instrument https://www.liquidinstruments.com/products/hardware-platforms/mokupro https://www.thinksrs.com/downloads/man.html [2023-8-9

    [15]

    Stanford-Research-Systems https://www.thinksrs.com/downloads/man.html [2023-8-9

    [16]

    Sine Scientific Instruments https://www.ssi-instrument.com/products/LIA.html [2023-8-9

    [17]

    Huang K, Geng Y Y, Zhang X B, Chen D H, Cai Z G, Wang M, Zhu Z, Wang Z X 2019 Sensors 19 3519Google Scholar

    [18]

    NF株式会社 http://www.nfcorp.com.cn/pro/mi/loc/loc/li5600 [2023-8-9]

    NF Corporation http://www.nfcorp.com.cn/pro/mi/loc/loc/li5600 [2023-8-9

    [19]

    国仪量子 https://www.cigtek.com/products. html [2023-8-9]

    CIQTEK https://www.cigtek.com/products.html [2023-8-9

    [20]

    南京鸿宾电子 https://www.ndwshb.com/product/105.html [2023-8-9]

    Nanjing Hongbin https://www.ndwshb.com/product/105.html [2023-8-9

    [21]

    AMETEK https://www.ameteksi.com/products/lock-in-amplifers/7265-dual-phase-lock-in-amplifer [2023-8-9

    [22]

    Chen C 2004 Proc. Natl. Acad. Sci. 101 5303Google Scholar

    [23]

    张勇, 李睿, 刘君华 1998 电测与仪表 35 30

    Zhang Y, Li R, Liu J H 1998 Electr. Meas. Instrum. 35 30

    [24]

    Bobalo Y, Bondariev A, Altunin S, Kiselychnyk M, Maksymiv I 2018 International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering Lviv-Slavske, Ukraine, February 20–24, 2018

    [25]

    Lu J, Pan D A, Bai Y, Qiao L 2008 Meas. Sci. Technol. 19 045702Google Scholar

    [26]

    陆俊 https://www.instrument.com.cn/download/shtml/062888.shtml [2008-8-9]

    Lu J https://www.instrument.com.cn/download/shtml/062888.shtml [2008-8-9

    [27]

    Stimpson G A, Skilbeck M S, Patel R L, Green B L, Morley G W 2019 Rev. Sci. Instrum. 90 094701Google Scholar

    [28]

    Wang Z, Shi X, Wang W, Cai W 2023 IEEE Trans. Instrum. Meas. 72 1Google Scholar

    [29]

    Lu J 2020 Rev. Sci. Instrum. 91 075106Google Scholar

    [30]

    《手册》编写组 2017 数学手册 (北京: 高等教育出版社)

    Handbook Writing Group 2017 Mathematical Manual (Beijing: Higher Education Press

    [31]

    Ziemer R, Tranter W 2015 Principles of Communications Systems, Modulation, and Noise (Hoboken: Wiley) pp184– 195

    [32]

    Wullch D, Bar M 1990 Int. J. Circuit Theory Appl. 18 135Google Scholar

    [33]

    Ugarte M, Carlosena A 2015 Circuits Syst. Signal Process. 34 3395Google Scholar

    [34]

    Kudrewicz J, Wasowicz S 2007 Equations of Phase-Locked Loops Dynamics on the Circle, Torus and Cylinder (New Jersey: World Scientific) pp9–123

    [35]

    Kittel P 1977 Rev. Sci. Instrum. 48 1214Google Scholar

    [36]

    原力超导 https://eastfs.com/glpmd [2003-8-9]

    Force superconductivity https://eastfs.com/glpmd [2003-8-9

    [37]

    Rubiola E 2008 Phase Noise and Frequency Stability in Oscillators (London: Cambridge University Press) pp1–135

    [38]

    Schwartz M 1970 Information Transmission Modulation and Noise—A Unified Approach to Communication System (New York: McGRAW-Hill) pp390–570

    [39]

    Bodson M 2005 Int. J. Adapt. Control Signal Process. 19 67Google Scholar

    [40]

    陆俊, 沈保根, 邵晓萍 2018 中国专利 201510182065.7 [2018-01-26]

    Lu J, Shen B G, Shao X P 2018 CHN Patent 201510182065.7 [2018-01-26

    [41]

    张靖悉, 胡勇, 潘柳2020锁相放大器校准规范

    Zhang J X, Hu Y, Pan L 2020 Calibration Specification for Lock-in Amplifiers

    [42]

    大恒新纪元科技股份有限公司 2022 精密大带宽锁相放大器企业标准

    Daheng New Era Technology Co., Ltd 2022 Enterprise Standards for Broadband High Precision Lock-in Amplifiers

    [43]

    王彪, 张江涛, 李艳强, 谷扬, 潘仙林 2012 电测与仪表 49 170

    Wang B, Zhang J T, Li Y Q, Gu Y, Pan X L 2012 Electr. Meas. Instrum. 49 170

    [44]

    Cultrera A, Corminboeuf D, D’Elia V, Tran N T M, Callegaro L, Ortolano M 2021 Metrologia 58 025001Google Scholar

    [45]

    Jia Z S, Liu Z Y, Wang L, He Q, Huang H T, Liu L Y 2018 Measurement 125 606Google Scholar

    [46]

    陆祖良, 杨雁, 黄璐, 王磊 2019 计量学报 40 319

    Lu Z L, Yang Y, Huang L, Wang L 2019 Acta Metrologica Sinica 40 319

    [47]

    陆祖良 2021 计量学报 42 913

    Lu Z L 2021 Acta Metrologica Sinica 42 913

    [48]

    Van B, Herold G 2014 Am. J. Phys. 82 785Google Scholar

    [49]

    Arora H, Klemmer N, Morizio J C, Wolf P D 2005 IEEE Trans. Circuits Syst. Regul. Pap. 52 379Google Scholar

    [50]

    Demir A 2006 IEEE Trans. Circuits Syst. Regul. Pap. 53 1869Google Scholar

    [51]

    Goldman S J 2007 Phase-Locked Loops Engineering Handbook for Integrated Circuits (Norwood: Artech House) pp5–161

    [52]

    Bondariev A P, Altunin S I 2017 International Conference on Information and Telecommunication Technologies and Radio Electronics (UkrMiCo) Odessa, September 11–15, 2017

    [53]

    Eulalia B, Luca D, Francesco P, Sergio R, Ioan T 2020 Acta Imeko 9 52Google Scholar

    [54]

    刘河山 2015 博士学位论文 (北京: 中国科学院大学)

    Liu H S 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [55]

    Shaddock D, Ware B, Halverson P G, Spero R E, Klipstein B 2006 Laser Interferometer Space Antenna: 6th International LISA Symposium Greenbelt, Maryland, USA, June 19–23, 2006

    [56]

    Cervantes F G, Heinzel G, Marín A F G, Wand V, Steier F, Jennrich O, Danzmann K 2007 Appl. Opt. 46 4541Google Scholar

    [57]

    Gerberding O, Sheard B, Bykov I, Kullmann J, Delgado J J E, Danzmann K, Heinzel G 2013 Classical Quantum Gravity 30 235029Google Scholar

    [58]

    Libbrecht K G, Black E D, Hirata C M 2003 Am. J. Phys. 71 1208Google Scholar

    [59]

    Sterczewski L A, Grzelczak M P, Plinski E F 2016 Rev. Sci. Instrum. 87 014702Google Scholar

    [60]

    Deninger A J, Göbel T, Schönherr D, Kinder T, Roggenbuck A, Köberle M, Lison F, Müller-Wirts T, Meissner P 2008 Rev. Sci. Instrum.79 044702Google Scholar

    [61]

    Zhang Z, Liu Y, Zhu X 2021 J. Phys. Conf. Ser. 1865 022010Google Scholar

    [62]

    Balgos M H, Hayazawa N, Tani M, Tanaka T 2023 Rev. Sci. Instrum. 94 043002Google Scholar

    [63]

    Ardekani H, Wilmington R L, Vutukuru M, Chen Z, Brandt R, Swan A, Gundogdu K 2021 Rev. Sci. Instrum. 92 104706Google Scholar

    [64]

    Kierzek M, Deal P E, Miller E W, Mukherjee S, Wachten D, Baumann A, Kaupp U B, Strünker T, Brenker C 2021 eLife 10 63129Google Scholar

    [65]

    陆俊, 杜昱光, 王倬, 张琛, 赵雪, 李国强, 谭广文, 竺晓山, 丁玮 2023 中国专利 202010361964.4 [2023-04-21]

    Lu J, Du Y G, Wang Z, Zhang C, Zhao X, Li G Q, Tan G W, Zhu X S, Ding W 2020 CHN Patent 202010361964.4 [2023-04-21

    [66]

    Sarra A, Stanchieri G D P, De M, Bordi F, Postorino P, Palange E 2021 IEEE Trans. Biomed. Circuits Syst. 15 177Google Scholar

    [67]

    Song X, Jin Y, Zhang X, Yu Y, Zhang D L 2009 Rev. Sci. Instrum. 80 086104Google Scholar

    [68]

    Song D, Yang W, Zhu J, Bai M, Liu Y 2022 J. Supercond. Novel Magn. 35 95Google Scholar

    [69]

    Barnard A W, Mikheev E, Finney J, Hiller H S, Goldhaber-Gordon D 2023 Rev. Sci. Instrum. 94 013902Google Scholar

    [70]

    邓荣, 江国栋 2013 电测与仪表 50 105

    Deng R, Jiang G D 2013 Electr. Meas. Instrum. 50 105

    [71]

    宋改青, 董有尔 2006 中国测试技术 32 78

    Song G Q, Dong Y E 2006 China Meas. Technol. 32 78

    [72]

    Tang T, Liu X, Yuan Y, Kiya R, Zhang T, Yang Y, Suetsugu S, Yamazaki Y, Ota N, Yamamoto K, Kamikubo H, Tanaka Y, Li M, Hosokawa Y, Yalikun Y 2023 Sens. Actuators, B 374 132698Google Scholar

    [73]

    Sandoval B, Janićijević Ž, Palestina R, et al. 2023 ACS Sens. 8 576Google Scholar

    [74]

    Kitta K, Sakamoto M, Hayakawa K, Nukazuka A, Kano K, Yamamoto T 2023 ACS Omega 8 14684Google Scholar

    [75]

    苏少奎 2019 低温物性及测量: 一个实验技术人员的理解合经验总结 (北京: 科学出版社)

    Su S K 2019 Low Temperature Physical Properties and Measurement: An Experimental Technician’s Understanding and Experience Summary (Beijing: Science Press

    [76]

    Carminati M, Ferrari G, Guagliardo F, Sampietro M 2011 Sens. Actuators, A 172 117Google Scholar

    [77]

    陆俊, 沈保根, 邵晓萍 2015 中国专利 201210081375.6 [2015-02-02]

    Lu J, Shen B G, Shao X P 2015 CHN Patent 201210081375.6 [2015-02-02

    [78]

    Heng X, Wei K, Zhao T, Xu Z, Cao Q, Huang X, Zhai Y, Ye M, Quan W 2023 IEEE Trans. Instrum. Meas. 72 1Google Scholar

    [79]

    Li J J, Du P C, Fu J Q, Wang X T, Zhou Q, Wang R Q 2019 Chin. Phys. B 28 040703Google Scholar

    [80]

    詹文山 1982 物理 12 732

    Zhan W S 1982 Physics 12 732

    [81]

    Pu Y, Zhao H, Murayama T, Tonthat L, Okita K, Watanabe Y, Yabukami S 2023 J. Magn. Soc. Jpn. 47 66Google Scholar

    [82]

    Meng Z, He X, Li Y, Huang J, Chen D, Wang Z 2023 IEEE Sens. J. 23 16123Google Scholar

    [83]

    Zhang Z, Xu Z, He J, Lu J 2022 IEEE Trans. Instrum. Meas. 71 1006009Google Scholar

    [84]

    Roos W, Hempel K A, Voigt C, Dederichs H, Schippan R 1980 Rev. Sci. Instrum. 51 612Google Scholar

    [85]

    Chen J, Xi X, Wang S, Lu J, Guo C, Wang W, Liu E, Wang W, Liu L, Wu G 2016 Rev. Sci. Instrum. 87 043902Google Scholar

    [86]

    陆俊, 郗学奎, 王利晨, 蒋建旺 2022 中国专利 202210373018.0 [2022-04-11]

    Lu J, Chi X K, Wang L C, Jiang J W 2022 CHN Patent 202210373018.0 [2022-04-11

    [87]

    Hayek J N, Herreño-Fierro C A, Patiño E J 2016 Rev. Sci. Instrum. 87 103113Google Scholar

    [88]

    Lu J, Pan D A, Bai Y, Su Y J, Qiao L J 2008 IEEE Trans. Magn. 44 2127Google Scholar

    [89]

    Drobac D, Marohnic Z, Zivkovic I, Prester M 2013 Rev. Sci. Instrum.84 054708Google Scholar

    [90]

    Krishnan R V, Banerjee A 1999 Rev. Sci. Instrum. 70 85Google Scholar

    [91]

    Harcombe D M, Ruppert M G, Fleming A J 2020 Beilstein J. Nanotechnol. 11 76Google Scholar

    [92]

    Shi Y, Lu Q 2012 Microsc. Microanal. 18 1016Google Scholar

    [93]

    刘凡微, 陈思丹, 张嘉未, 陈欣中, 毛寒青, 黄思思, 陈曦 2022 电子显微学报 41 627

    Liu F W, Chen S D, Zhang J W, Chen X Z, Mao H Q, Huang S S, Chen X 2022 J. Chin. Electron Microsc. Soc. 41 627

    [94]

    Li X, Sun J, Jin L, Shangguan Y, Chen K, Qin H 2023 Opt. Express 31 19754Google Scholar

    [95]

    Leung M S, Stupian G W 1986 Appl. Surf. Sci. 25 435Google Scholar

    [96]

    徐欣, 谈宜东, 穆衡霖, 李岩, 王加刚, 金景峰 2023 激光与光电子学进展 60 0312006Google Scholar

    Xu X, Tan Y D, Mu H L, Li Y, Wang J G, Jin J F 2023 Laser OptoElectron. Prog. 60 0312006Google Scholar

    [97]

    Finneran I A, Welsch R, Allodi M A, Miller I I I, Blake G A 2017 J. Phys. Chem. Lett. 8 4640Google Scholar

    [98]

    Li H, Li Z, Wan W, Zhou K, Liao X, Yang S, Wang C, Cao J C, Zeng H 2020 ACS Photonics 7 49Google Scholar

    [99]

    Jain P, Priya P, Ram T V S, Parikh K S, Bandi T N 2021 Rev. Sci. Instrum. 92 124705Google Scholar

    [100]

    Slim J, Nikolaev N, Rathmann F, Wirzba A, Zurek M 2021 Phys. Rev. Accel. Beams 2 4Google Scholar

    [101]

    Boss J, Cujia K, Zopes J, Degen C 2017 Science 356 837Google Scholar

    [102]

    Lu J 2021 A Reconfigurable Electrical Circuit Auto-Processing Method for Direct Electromagnetic Inversion, As a Chapter in Intelligent Computing and Block Chain (Singapore: Springer Nature) pp190–203

    [103]

    Jung S M 2016 Ph. D. Dissertation (Tucson: The University of Arizona

    [104]

    Kaptein M, Van E, Iannuzzi D, Braunstein L A 2017 Plos One 12 e0174182Google Scholar

    [105]

    Golestan S, Guerrero J M, Vasquez J C 2017 IEEE Trans. Power Electron. 32 9013Google Scholar

    [106]

    Uzzaman T, Kim U, Choi W 2022 IEEE Access 10 32870Google Scholar

    [107]

    Neunteufel D, Grebien S, Arthaber H 2022 Sensors 22 2663Google Scholar

    [108]

    Aguirre J, Medrano N, Calvo B, Celma S 2011 IEEE Sensors Conference Limerick, Ireland, October 28–31, 2011 6127317

  • [1] Tu Bing-Sheng. Precise measurements of electron g factors in bound states of few-electron ions. Acta Physica Sinica, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [2] Liu Xin, Zhou Xiao-Peng, Wen Wei-Qiang, Lu Qi-Feng, Yan Cheng-Long, Xu Guo-Qin, Xiao Jun, Huang Zhong-Kui, Wang Han-Bing, Chen Dong-Yang, Shao Lin, Yuan Yang, Wang Shu-Xing, Ma Wan-Lu, Ma Xin-Wen. Spectral calibration for electron beam ion trap and precision measurement of M1 transition wavelength in Ar13+. Acta Physica Sinica, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [3] Zhao Tian-Ze, Yang Su-Hui, Li Kun, Gao Yan-Ze, Wang Xin, Zhang Jin-Ying, Li Zhuo, Zhao Yi-Ming, Liu Yu-Zhe. Accurate measurement of optical fiber time delay based on frequency domain reflectometry. Acta Physica Sinica, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [4] Spectral Calibration for Electron Beam Ion Trap and Precision Measurement of M1 Transition Wavelength in Ar13+. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211663
    [5] Liu Jian-Ping, Wu Jun-Fei, Li Qing, Xue Chao, Mao De-Kai, Yang Shan-Qing, Shao Cheng-Gang, Tu Liang-Cheng, Hu Zhong-Kun, Luo Jun. Progress on the precision measurement of the Newtonian gravitational constant G. Acta Physica Sinica, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [6] Wang Lei, Guo Hao, Chen Yu-Lei, Wu Da-Jin, Zhao Rui, Liu Wen-Yao, Li Chun-Ming, Xia Mei-Jing, Zhao Bin-Bin, Zhu Qiang, Tang Jun, Liu Jun. A method of measuring micro-displacement based on spin magnetic resonance effect of diamond color center. Acta Physica Sinica, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [7] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [8] Mu Xiu-Li, Li Chuan-Liang, Deng Lun-Hua, Wang Hai-Ling. Spectra of I2+ for possible measurement of α and μ constant. Acta Physica Sinica, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [9] Shi Ping, Ma Jian, Qian Xuan, Ji Yang, Li Wei. Signal-to-noise ratio of spin noise spectroscopy in rubidium vapor. Acta Physica Sinica, 2017, 66(1): 017201. doi: 10.7498/aps.66.017201
    [10] Jia Guo, Huang Xiu-Guang, Xie Zhi-Yong, Ye Jun-Jian, Fang Zhi-Heng, Shu Hua, Meng Xiang-Fu, Zhou Hua-Zhen, Fu Si-Zu. Experimental measurement of liquid deuterium equation of state data. Acta Physica Sinica, 2015, 64(16): 166401. doi: 10.7498/aps.64.166401
    [11] Zhang Xuan-Ni, Zhang Chun-Min, Ai Jing-Jing. The signal-to-noise ratio of the quarter beam of wind imaging polarization interferometer. Acta Physica Sinica, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [12] Wang Jin-Tao, Liu Zi-Yong. Method of accurately measuring silicon sphere density difference based on hydrostatic suspension principls. Acta Physica Sinica, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [13] Ma Aai-Ru, Sui Zhan, Feng Guo-Ying, Sun Nian-Chun, Wang Yi-Shan, Zhang Bin, Chen Jian-Guo. Theoretical analysis on scanning spectral filter method for signal-noise-ratio improvment in femtosecond laser system. Acta Physica Sinica, 2012, 61(7): 074206. doi: 10.7498/aps.61.074206
    [14] Zeng Bing, Zeng Shu-Guang, Zhang Bin, Sun Nian-Chun, Sui Zhan. A scanning filtering method for enhancing the signal-to-noise ratio of chirped laser pulse. Acta Physica Sinica, 2012, 61(15): 154209. doi: 10.7498/aps.61.154209
    [15] Wang De-Jiang, Kuang Hai-Peng. Experimental study of the effects on signal noise ratio and dynamic range caused by analog gain for CCD. Acta Physica Sinica, 2011, 60(7): 077208. doi: 10.7498/aps.60.077208
    [16] Li Wei-Chang, Wang Zhao-Hua, Liu Cheng, Teng Hao, Wei Zhi-Yi. Contrast ratio of femtosecond ultraintense Ti:sapphire laser with multi-pass amplifier. Acta Physica Sinica, 2011, 60(12): 124210. doi: 10.7498/aps.60.124210
    [17] Zhang Yi-Chi, Wu Ji-Zhou, Ma Jie, Zhao Yan-Ting, Wang Li-Rong, Xiao Lian-Tuan, Jia Suo-Tang. Research on improve the SNR of ultracold cesium molecule rovibronic spectrum via best optimization parameter control. Acta Physica Sinica, 2010, 59(8): 5418-5423. doi: 10.7498/aps.59.5418
    [18] Yuan Zhi-Lin, Zhang Chun-Min, Zhao Bao-Chang. Study of SNR of a novel polarization interference imaging spectrometer. Acta Physica Sinica, 2007, 56(11): 6413-6419. doi: 10.7498/aps.56.6413
    [19] Han Hai_Nian, Zhang Wei, Wang Peng, Li De_Hua, Wei Zhi_Yi, Shen Nai_Chen, Nie Yu_Xin, Gao Yu_Ping, Zhang Shou_Gang, Li Shi_Qun. Precise control of femtosecond Ti:sapphire laser frequency comb. Acta Physica Sinica, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
    [20] Han Hai-Nian, Zhang Wei, Tong Juan-Juan, Wang Yan-Hui, Wang Peng, Wei Zhi-Yi, Li De-Hua, Shen Nai-Chen, Nie Yu-Xin, Dong Tai-Qian. Control of carrier-envelope phase offset in femtosecond laser with PLL and TV-Rb clock. Acta Physica Sinica, 2007, 56(1): 291-295. doi: 10.7498/aps.56.291
Metrics
  • Abstract views:  7857
  • PDF Downloads:  602
  • Cited By: 0
Publishing process
  • Received Date:  11 April 2023
  • Accepted Date:  14 July 2023
  • Available Online:  05 September 2023
  • Published Online:  20 November 2023

/

返回文章
返回
Baidu
map