-
Optical fiber time delay system has been widely used in optical-controlled phased array antenna, radar distributed network, interferometric optical fiber hydrophone and high-speed photoelectric chip. These applications require high-accuracy and high-stability time delay generated by the system. Time delay measurement directly determines the precision and resolution of the system. Therefore, high-precision time delay measurement method is of great significance in developing the optical fiber delay system. In this paper, progress and problems of optical fiber time delay measurements are discussed. A new method of precisely measuring the time delay in optical fiber is proposed. We use the frequency domain reflectometry (FDR) to avoid the discrepancy between measuring range and measuring precision, which exists in both time-of-flight (TOF) method and phase discrimination approach. An intensity modulated 1064 nm laser signal is used as a light source. The modulation frequency is tuned from 10 MHz to 200 MHz in steps of 0.5 MHz. The spectrum of echo signal is obtained by measuring the amplitudes and phases of echo signals at different frequency points. The delay information is obtained via the inverse fast Fourier transform (IFFT). The precision of delay measurement in our method is determined by step size of frequency variation, and a higher-precision measurement is realized by using interpolation zero algorithm. Since our method is not to modulate the optical frequency, but to control the frequency of the modulation signal loaded on the electro-optic modulator, it is easy to achieve the high-precision and high-linearity frequency modulation. In this paper, theoretical analysis and time delay measurement are used to compare the FDR method with conventional TOF measurement method. The accurate measurement of 33–200 ps is realized, and measurement error is lower than 7 ps. We also design an incremental measurement experiment to study the resolution of the FDR method, which achieves a delay resolution of 3.3 ps. The influence of temperature jitter is analyzed to prove the reliability of experimental results. It proves that the FDR method has a higher measuring accuracy than the TOF method. The time delay measurement precision can be further improved by expanding the modulation bandwidth. Our method is to be applied to an optical fiber delay system to improve the precision and resolution of system delay.
-
Keywords:
- frequency domain reflectometry /
- optical delay /
- spectral analysis /
- precision measurement
[1] 李炎炎, 高彦泽, 李卓, 杨苏辉, 王欣, 张金英 2019 光学学报 39 0806002Google Scholar
Li Y Y, Gao Y Z, Li Z, Yang S H, Wang X, Zhang J Y 2019 Acta Opt. Sin. 39 0806002Google Scholar
[2] 陆强, 张伟, 林荣刚 2012 电子设计工程 20 160Google Scholar
Lu Q, Zhang W, Lin R G 2012 Elec. Des. Eng. 20 160Google Scholar
[3] 何子述, 金林, 韩蕴洁, 严济鸿 2005 电子学报 33 12Google Scholar
He Z S, Jin L, Han Y J, Yan J H 2005 Acta Electr. Sin. 33 12Google Scholar
[4] Gao Y Z, Zhou L, Wang X, Yan H, Hao K Z, Yang S H, Li Z 2019 IEEE Access 7 93489Google Scholar
[5] Wang X C, Li S P, Jiang X, Hu J T, Xue M, Xu S Z, Pan S L 2019 Chin. Opt. Lett. 17 060601Google Scholar
[6] 陈瑞强, 江月松, 裴朝 2013 光学学报 33 0912002Google Scholar
Chen R Q, Jiang Y S, Pei Z 2013 Acta Opt. Sin. 33 0912002Google Scholar
[7] Prokhorov D, Donchenko S S, Kolmogorov O V, Сhemesova E V 2019 SPIE Optical Metrology, Munich, Germany 2019 p1105714
[8] Cui M, Zeitouny M G, Bhattacharya N 2009 Opt. Lett. 34 1982Google Scholar
[9] Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar
[10] 冀航 2007 博士学位论文 (武汉: 华中科技大学)
Ji H 2007 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[11] Huang X X, Yin F F, Li J Q, Dai Y T, Zhou Y, Xu K 2018 IEEE 3rd Optoelectronics Global Conference (OGC) 2018 p130
[12] 汪友生, 徐小平 2003 北京工业大学学报 29 424Google Scholar
Wang Y S, Xu X P 2003 J. Beij. Univ. Tech. 29 424Google Scholar
[13] Ma X W, Ma C, Xin M 2015 Elec. Qual. 3 38Google Scholar
[14] Eickhoff W, Ulrich R 1981 Appl. Phys. Lett. 39 693Google Scholar
[15] Illig D W, Jemison W D, Rumbaugh L, Laux A, Mullen L J 2014 Proc. of SPIE 9111 91110RGoogle Scholar
[16] Illig D W, Jemison W D, Rumbaugh L, Lee R, Laux A, Mullen L 2013 Ocean Eng. 58 304Google Scholar
[17] Illig D W, Rumbaugh L, Jemison W D, Laux A, Mullen L 2014 Oceans St. John's, St. John’s, Netherlands, September 14, 2014 p1
[18] Yoshimichi O, Naoshi H 2018 IEEE T. Dielect. El. In. p2467
[19] Chen Y, Zhao Y 2000 Chin. J. Lasers B 9 219
[20] Macdonald R I 1981 Appl. Opt. 20 1840Google Scholar
[21] 欧阳竑, 王侠, 韦幕野, 岳耀笠 2020 光电技术应用 35 41Google Scholar
Ou Yang H, Wang X, Wei M Y, Yue Y L 2020 Electro-Optic Tech. Appl. 35 41Google Scholar
[22] 闵帅博, 严利平, 崔建军, 王冬, 束红林, 陈恺 2020 计量学报 41 1332Google Scholar
Min S B, Yan L P, Cui J J, Wang D, Shu H L, Chen K 2020 ACTA Metro. Sin. 41 1332Google Scholar
-
图 4 103.31 m光纤延时测量 (a)探测器接收到的频域信号; (b)直接IFFT变换得到的时域测量信号; (c) m = 10M, 补零IFFT变换得到的时域测量信号
Figure 4. Optical fiber delay measurement of 103.31 m optical fiber: (a) Frequency domain signal; (b) time-domain measurement signals obtained by IFFT transformation; (c) time domain measurement signal obtained by zero-padding IFFT transformation when m = 10M.
图 7 频域反射法最小可分辨延时增量的测量, m = 400M, 测量精度6.6 ps; m = 800M, 测量精度3.3 ps; m = 1600M, 测量精度1.6 ps
Figure 7. Measurement results of minimum discernible delay increment by frequency domain reflection method, m = 400M, measurement accuracy 6.6 ps; m = 800M, measurement accuracy 3.3 ps; m = 1600M, measurement accuracy 1.6 ps.
表 1 光纤延时测量结果(单位为ns)
Table 1. Measurement results of optical fiber delay (in ns).
Measurement method Optical fiber 1 Optical fiber 2 Optical fiber 3 Optical fiber 4 Time discrimination 64.5 128.6 256.7 516.6 Phase measuring profilometry 66.0 127.9 261.6 512.7 Frequency domain reflection 64.5 128.7 256.8 516.3 -
[1] 李炎炎, 高彦泽, 李卓, 杨苏辉, 王欣, 张金英 2019 光学学报 39 0806002Google Scholar
Li Y Y, Gao Y Z, Li Z, Yang S H, Wang X, Zhang J Y 2019 Acta Opt. Sin. 39 0806002Google Scholar
[2] 陆强, 张伟, 林荣刚 2012 电子设计工程 20 160Google Scholar
Lu Q, Zhang W, Lin R G 2012 Elec. Des. Eng. 20 160Google Scholar
[3] 何子述, 金林, 韩蕴洁, 严济鸿 2005 电子学报 33 12Google Scholar
He Z S, Jin L, Han Y J, Yan J H 2005 Acta Electr. Sin. 33 12Google Scholar
[4] Gao Y Z, Zhou L, Wang X, Yan H, Hao K Z, Yang S H, Li Z 2019 IEEE Access 7 93489Google Scholar
[5] Wang X C, Li S P, Jiang X, Hu J T, Xue M, Xu S Z, Pan S L 2019 Chin. Opt. Lett. 17 060601Google Scholar
[6] 陈瑞强, 江月松, 裴朝 2013 光学学报 33 0912002Google Scholar
Chen R Q, Jiang Y S, Pei Z 2013 Acta Opt. Sin. 33 0912002Google Scholar
[7] Prokhorov D, Donchenko S S, Kolmogorov O V, Сhemesova E V 2019 SPIE Optical Metrology, Munich, Germany 2019 p1105714
[8] Cui M, Zeitouny M G, Bhattacharya N 2009 Opt. Lett. 34 1982Google Scholar
[9] Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar
[10] 冀航 2007 博士学位论文 (武汉: 华中科技大学)
Ji H 2007 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[11] Huang X X, Yin F F, Li J Q, Dai Y T, Zhou Y, Xu K 2018 IEEE 3rd Optoelectronics Global Conference (OGC) 2018 p130
[12] 汪友生, 徐小平 2003 北京工业大学学报 29 424Google Scholar
Wang Y S, Xu X P 2003 J. Beij. Univ. Tech. 29 424Google Scholar
[13] Ma X W, Ma C, Xin M 2015 Elec. Qual. 3 38Google Scholar
[14] Eickhoff W, Ulrich R 1981 Appl. Phys. Lett. 39 693Google Scholar
[15] Illig D W, Jemison W D, Rumbaugh L, Laux A, Mullen L J 2014 Proc. of SPIE 9111 91110RGoogle Scholar
[16] Illig D W, Jemison W D, Rumbaugh L, Lee R, Laux A, Mullen L 2013 Ocean Eng. 58 304Google Scholar
[17] Illig D W, Rumbaugh L, Jemison W D, Laux A, Mullen L 2014 Oceans St. John's, St. John’s, Netherlands, September 14, 2014 p1
[18] Yoshimichi O, Naoshi H 2018 IEEE T. Dielect. El. In. p2467
[19] Chen Y, Zhao Y 2000 Chin. J. Lasers B 9 219
[20] Macdonald R I 1981 Appl. Opt. 20 1840Google Scholar
[21] 欧阳竑, 王侠, 韦幕野, 岳耀笠 2020 光电技术应用 35 41Google Scholar
Ou Yang H, Wang X, Wei M Y, Yue Y L 2020 Electro-Optic Tech. Appl. 35 41Google Scholar
[22] 闵帅博, 严利平, 崔建军, 王冬, 束红林, 陈恺 2020 计量学报 41 1332Google Scholar
Min S B, Yan L P, Cui J J, Wang D, Shu H L, Chen K 2020 ACTA Metro. Sin. 41 1332Google Scholar
Catalog
Metrics
- Abstract views: 6525
- PDF Downloads: 99
- Cited By: 0