Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Law of diffusion bubbles produced by high-voltage pulsed electric field in liquid

Wu Xiao-Dong Chen Yan-Zhou Han Rui Guo Yu-Yi Zhuang Jie Shi Fu-Kun

Citation:

Law of diffusion bubbles produced by high-voltage pulsed electric field in liquid

Wu Xiao-Dong, Chen Yan-Zhou, Han Rui, Guo Yu-Yi, Zhuang Jie, Shi Fu-Kun
PDF
HTML
Get Citation
  • Pulsed electric field is a novel physical energy source for treating atrial fibrillation and tumor ablation, which has advantages over traditional thermal ablation, such as being non-thermal, short treatment time, tissue selectivity, and low contact pressure requirements. The diffusion bubbles generated during physical ablation may lead to gas embolism and silent cerebral events, with potential hazards such as tissue damage and cerebral ischemia. Previous studies have shown that the number of bubbles generated is correlated with the electrical properties of the treated object, pulse parameters (pulse waveform, treatment time and input energy), and electrodes. The number of bubbles are more significant at the cathode than at the anode, and the number of bubbles positively correlates with the input energy. However, to the best of our knowledge, no studies have been conducted to investigate the effects of ablation pulse parameters on diffusion bubbles. Therefore, in our experiment, a platform for producing pulses and observing diffusion bubble is built, and the needle-ring electrode we made realizes the capture and measurement of diffusion bubbles. Since pulses with a voltage of 3 kV and a pulse width of 100 μs are commonly used as ablation parameters for atrial fibrillation and tumor in pulsed field ablation (PFA), the pulse width of unipolar pulse is selected as 5, 10, 50, and 100 μs, and the number of pulses applied is 1. The pulse voltage is determined according to the parameters commonly used in PFA and the simulation calculation of the field strength distribution of the needle-ring electrode. After determining the parameters, this experiment explicitly investigates the relationships among diffusion bubbles and solution conductivity, pulse voltage, pulse width, input energy, and other parameters. Meanwhile, the size distributions of diffusion bubbles under different operating conditions are statistically investigated. Besides, the possible causes of diffuse bubbles are also explored. We evaluate the number of bubbles by measuring the cross-sectional area of the diffusion bubbles from a top-down perspective. The experimental results show that the area of diffusion bubbles generated in the liquid is positively correlated with pulse voltage and input energy; high conductivity and long pulse width can enhance the thermal effect and increase the area of diffusion bubbles; diffusion bubbles with a diameter larger than 100 μm are easily generated under high conductivity and high pulse width conditions. By speculating on the results, the electrolytic reaction may be the main source of diffusion bubbles when the needle electrode is the cathode. This study is expected to optimize future pulsed electric field ablation parameters.
      Corresponding author: Shi Fu-Kun, fukunshi@sibet.ac.cn
    • Funds: Project supported by the Basic Research Pilot Project of Suzhou, China (Grant No. SJC2021025), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2022QE168), and the Quancheng 5150 Project, China.
    [1]

    Kornej J, Börschel C S, Benjamin E J, Schnabel R B 2020 Circ. Res. 127 4Google Scholar

    [2]

    Chen W, Zheng R, Baade P D, Zhang S, Zeng H, Bray F, Jemal A, Yu X Q, He J 2016 CA Cancer J. Clin. 66 115Google Scholar

    [3]

    Koruth J S, Kuroki K, Kawamura I, Brose R, Viswanathan R, Buck E D, Donskoy E, Neuzil P, Dukkipati S R, Reddy V Y 2020 Circ. Arrhythm. Electrophysiol. 13 e008303Google Scholar

    [4]

    Kuroki K, Whang W, Eggert C, Lam J, Leavitt J, Kawamura I, Reddy A, Morrow B, Schneider C, Petru J, Turagam M K, Koruth J S, Miller M A, Choudry S, Ellsworth B, Dukkipati S R, Neuzil P, Reddy V Y 2020 HeartRhythm 17 1528Google Scholar

    [5]

    Neven K, van Es R, van Driel V, van Wessel H, Fidder H, Vink A, Doevendans P, Wittkampf F 2017 Circ. Arrhythm. Electrophysiol. 10 e004672Google Scholar

    [6]

    van Driel V J H M, Neven K, van Wessel H, Vink A, Doevendans P A F M, Wittkampf F H M 2015 HeartRhythm 12 1838Google Scholar

    [7]

    Calkins H, Hindricks G, Cappato R, et al. 2018 EP Europace. 20 157Google Scholar

    [8]

    Li C Y, Li S N, Jiang C Y, Fu H, Liang M, Wang Z L, Zhong J Q, Zhou X H, Wu Q, Chang D, Wang Y, Zhou G Q, Liu W S, Song W, Sang C H, Long D Y, Du X, Dong J Z, Ma C S 2020 Pacing Clin Electrophysiol. 43 627Google Scholar

    [9]

    Tolga A, Kivanc Y, Tumer Erdem G, Serdar B, Christian-H H, Roland R T 2019 J. Atr. Fibrillation 12 2208Google Scholar

    [10]

    Chen X H, Ren Z G, Zhu T Y, Zhang X X, Peng Z Y, Xie H Y, Zhou L, Yin S Y, Sun J Y, Zheng S S 2015 Sci. Rep. 5 16233Google Scholar

    [11]

    Gómez-Barea M, García-Sánchez T, Ivorra A 2022 Sci. Rep. 12 16144Google Scholar

    [12]

    du Pré B C, van Driel V J, van Wessel H, Loh P, Doevendans P A, Goldschmeding R, Wittkampf F H, Vink A 2013 EP Europace 15 144Google Scholar

    [13]

    Lavee J, Onik G, Mikus P, Rubinsky B 2007 Heart Surg. Forum. 10 E162Google Scholar

    [14]

    Neven K, van Driel V, van Wessel H, van Es R, Doevendans P A, Wittkampf F 2014 HeartRhythm 11 1465Google Scholar

    [15]

    Wittkampf F H, Van Driel V J, Van Wessel H, Vink A, Hof I E, Gründeman P F, Hauer R N, Loh P 2011 J. Cardiovasc. Electrophysiol. 22 302Google Scholar

    [16]

    Wittkampf F H M, van Driel V J, van Wessel H, Neven K G E J, Gründeman P F, Vink A, Loh P, Doevendans P A 2012 Circ. Arrhythm. Electrophysiol. 5 581Google Scholar

    [17]

    Koruth J S, Kuroki K, Iwasawa J, Viswanathan R, Brose R, Buck E D, Donskoy E, Dukkipati S R, Reddy V Y 2020 EP Europace 22 434Google Scholar

    [18]

    Maan A, Koruth J 2022 Curr. Cardiol. Rep. 24 103Google Scholar

    [19]

    Reddy V Y, Koruth J, Jais P, Petru J, Timko F, Skalsky I, Hebeler R, Labrousse L, Barandon L, Kralovec S, Funosako M, Mannuva B B, Sediva L, Neuzil P 2018 JACC Clin Electrophysiol. 4 987Google Scholar

    [20]

    Arshad R N, Abdul-Malek Z, Munir A, Ahmad M H, Sidik M A B, Nawawi Z 2021 2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM) Johor Bahru, Malaysia, July 11–15 July, 2021 p250

    [21]

    Bardy G H, Coltorti F, Ivey T D, Alferness C, Rackson M, Hansen K, Stewart R, Greene H L 1986 Circulation 73 525Google Scholar

    [22]

    Kandušer M, Belič A, Čorović S, Škrjanc I 2017 Sci. Rep. 7 8115Google Scholar

    [23]

    Barak M, Katz Y 2005 CHEST 128 2918Google Scholar

    [24]

    Holt P M, Boyd E G 1986 Circulation 73 1029Google Scholar

    [25]

    Rowland E, Foale R, Nihoyannopoulos P, Perelman M, Krikler D M 1985 Heart 53 240Google Scholar

    [26]

    Deneke T, Jais P, Scaglione M, Schmitt R, Di Biase L, Christopoulos G, Schade A, Mügge A, Bansmann M, Nentwich K, Müller P, Krug J, Roos M, Halbfass P, Natale A, Gaita F, Haines D 2015 J. Cardiovasc. Electrophysiol. 26 455Google Scholar

    [27]

    Miyazaki S, Kajiyama T, Yamao K, Hada M, Yamaguchi M, Nakamura H, Hachiya H, Tada H, Hirao K, Iesaka Y 2019 Heart Rhythm 16 41Google Scholar

    [28]

    Miyazaki S, Watanabe T, Kajiyama T, Iwasawa J, Ichijo S, Nakamura H, Taniguchi H, Hirao K, Iesaka Y 2017 Circ. Arrhythm. Electrophysiol. 10 e005612Google Scholar

    [29]

    Warton J M 2012 Yearbook of Cardiology 2012 440Google Scholar

    [30]

    van Es R, Groen M H A, Stehouwer M, Doevendans P A, Wittkampf F H M, Neven K 2019 J. Cardiovasc. Electrophysiol. 30 2071Google Scholar

    [31]

    Osuna I A R, Cobelli P, Olaiz N 2022 Micromachines 13 1234Google Scholar

    [32]

    Zhang R B, Zheng N C, Liu H Y, Wang L M 2015 IEEE Trans. Plasma Sci. 43 610Google Scholar

    [33]

    Zhang R B, Li X, Wang Z Y 2019 IEEE Trans. Dielectr. Electr. Insul. 26 353Google Scholar

    [34]

    Bradley C J, Haines D E 2020 J. Cardiovasc. Electrophysiol. 31 2136Google Scholar

    [35]

    Zhang R B, Li X, Wang Z Y, Chen Z H, Du G 2018 Appl. Phys. Lett. 113 063701Google Scholar

    [36]

    Jinback H, Stewart M T, Cheek D S, Francischelli D E, Kirchhof N 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Minneapolis, MN, September 3–6, 2009 p3381

    [37]

    Livia C, Sugrue A, Witt T, Polkinghorne M D, Maor E, Kapa S, Lehmann H I, DeSimone C V, Behfar A, Asirvatham S J, McLeod C J 2018 J. Am. Heart Assoc. 7 e009070Google Scholar

    [38]

    Niessen C, Igl J, Pregler B, Beyer L, Noeva E, Dollinger M, Schreyer A G, Jung E M, Stroszczynski C, Wiggermann P 2015 J. Vasc. Interv. Radiol. 26 694Google Scholar

    [39]

    Zager Y, Kain D, Landa N, Leor J, Maor E 2016 PLoS One 11 e0165475Google Scholar

    [40]

    Zimmerman A, Grand D, Charpentier K 2017 J. Hepatocell. Carcinoma 4 49Google Scholar

    [41]

    王力, 陈林, 丰明俊, 马青 2009 北京生物医学工程 28 143Google Scholar

    Wang L, Chen L, Feng M J, Ma Q 2009 Beijing Biomedical Engineering 28 143Google Scholar

    [42]

    Rubinsky L, Guenther E, Mikus P, Stehling M, Rubinsky B 2016 Technol. Cancer Res. Treat. 15 NP95Google Scholar

    [43]

    张若兵, 杜钢, 傅贤, 梁大鹏 2014 高电压技术 40 1889Google Scholar

    Zhang R B, Du G, Fu X, Liang D P 2014 High Voltage Eng. 40 1889Google Scholar

    [44]

    Shneider M N, Pekker M 2013 J. Appl. Phys. 114 214906Google Scholar

    [45]

    李元, 李林波, 温嘉烨, 倪正全, 张冠军 2021 70 024701Google Scholar

    Li Y, Li L B, Wen J Y, Ni Z Q, Zhang G J 2021 Acta Phys. Sin. 70 024701Google Scholar

    [46]

    Shneider M N, Pekker M 2013 Phys. Rev. E 87 043004Google Scholar

    [47]

    姚陈果, 郑爽, 赵亚军, 刘红梅, 王艺麟, 董守龙 2020 高电压技术 46 1830Google Scholar

    Yao C G, Zheng S, Zhao Y J, Liu H M, Wang Y L, Dong S L 2020 High Voltage Eng. 46 1830Google Scholar

    [48]

    Chung E M L, Banahan C, Patel N, Janus J, Marshall D, Horsfield M A, Rousseau C, Keelan J, Evans D H, Hague J P 2015 PLoS One 10 e0122166Google Scholar

    [49]

    Haines D E, Stewart M T, Ahlberg S, Barka N D, Condie C, Fiedler G R, Kirchhof N A, Halimi F, Deneke T 2013 Circ. Arrhythm. Electrophysiol. 6 16Google Scholar

  • 图 1  (a)实验系统的简易图, 包含扩散气泡观察系统、针-环电极、示波器、脉冲发生装置; (b)针-环电极装置模型图; (c)针电极实物图; (d) 电导率14.08 mS/cm, 脉宽100 μs, 脉冲输出电压250 V时, 拍摄的扩散气泡图像

    Figure 1.  (a) A simple diagram of the experimental system, including the diffusion bubble observation system, needle-ring electrode, oscilloscope, and pulse generation device; (b) a model of the needle-ring electrode device; (c) the actual diagram of the needle electrode; (d) the image of the diffusion bubble generated by theconductivity of 14.08 mS/cm, pulse width of 100 μs, pulse output voltage of 250 V.

    图 2  (a) YZ截面场强分布图; (b) XY截面场强分布图

    Figure 2.  (a) Field intensity distribution of the YZ cross-section; (b) field intensity distribution of the XY cross-section.

    图 3  不同电压时的电流波形图(电导率-脉宽-电压) (a) 140.8 mS/cm-100 μs-20/80 V; (b) 140.8 mS/cm-50 μs-20/80 V; (c) 140.8 mS/cm-100 μs-90 V

    Figure 3.  Current waveform plot at different voltages (electrical conductivity-pulse width-voltage): (a) 140.8 mS/cm-100 μs-20/80 V; (b) 140.8 mS/cm-50 μs-20/80 V; (c) 140.8 mS/cm-100 μs-90 V.

    图 4  不同电导率下, 扩散气泡面积随电压变化的线性拟合图 (a) 140.8 mS/cm; (b) 14.08 mS/cm; (c) 1.408 mS/cm

    Figure 4.  Linear fit of diffusion bubble area with voltage under different electrical conductivity: (a) 140.8 mS/cm; (b) 14.08 mS/cm; (c) 1.408 mS/cm.

    图 5  不同电导率下, 针电极为阳极时的扩散气泡面积统计 (a) 140.8 mS/cm; (b) 14.08 mS/cm

    Figure 5.  Statistical analysis of the diffusion bubble area when the needle electrode acts as an anode under different electrical conductivity: (a) 140.8 mS/cm; (b) 14.08 mS/cm.

    图 6  不同电导率下, 扩散气泡面积随输入能量变化的拟合图 (a) 140.8 mS/cm; (b) 14.08 mS/cm; (c) 1.408 mS/cm

    Figure 6.  Fitted plot of diffusion bubbles area as a function of input energy under different electrical conductivity: (a) 140.8 mS/cm; (b) 14.08 mS/cm; (c) 1.408 mS/cm.

    图 7  气泡直径尺寸分布图 (电导率-脉宽) (a) 140.8 mS/cm-5 μs; (b) 140.8 mS/cm-10 μs; (c) 140.8 mS/cm-50 μs; (d) 140.8 mS/cm-100 μs; (e) 14.08 mS/cm-5 μs; (f) 14.08 mS/cm-10 μs; (g) 14.08 mS/cm-50 μs; (h) 14.08 mS/cm-100 μs; (i) 1.408 mS/cm-50 μs; (j) 1.408 mS/cm-100 μs

    Figure 7.  Distribution of bubble diameter size (electrical conductivity-pulse width): (a) 140.8 mS/cm-5 μs; (b) 140.8 mS/cm-10 μs; (c) 140.8 mS/cm-50 μs; (d) 140.8 mS/cm-100 μs; (e) 14.08 mS/cm-5 μs; (f) 14.08 mS/cm-10 μs; (g) 14.08 mS/cm-50 μs; (h) 14.08 mS/cm-100 μs; (i) 1.408 mS/cm-50 μs; (j) 1.408 mS/cm-100 μs.

    表 1  脉冲参数表

    Table 1.  Pulse parameter table.

    电导率/
    (mS·cm–1)
    脉宽/μs 电压/V
    140.8 5 100 120 140 160 180 200
    10 60 80 100 120 140 160
    50 20 30 40 50 60 70
    100 10 20 30 40 50 60
    14.08 5 650 700 750 800 850 900
    10 400 450 500 550 600 650
    50 200 225 250 275 300 325
    100 125 150 175 200 225 250
    1.408 50 800 820 840 860 880 900
    100 600 650 700 750 800 850
    DownLoad: CSV

    表 2  扩散气泡面积随电压变化的拟合方程

    Table 2.  Fitting equation for the area of diffusion bubble with voltage.

    电导率/(mS·cm–1)脉宽/μsY=AX+B
    AB横截距
    140.85300–34533115
    10655–5286380
    501452–1775712
    1002597–205678
    14.08535–23288665
    1060–24444407
    50498–108883218
    100712–104663146
    1.408509.5–7541793
    10035–23448669
    DownLoad: CSV

    表 3  不同脉冲参数的输入能量表

    Table 3.  Input energy table for different pulse parameters.

    电导率/(mS·cm–1)脉宽/μs输入能量/mJ
    140.851.251.802.453.204.055.00
    100.901.602.503.604.906.40
    500.501.122.003.124.506.12
    1000.251.002.254.006.259.00
    14.0856.037.008.039.1410.3211.57
    104.575.787.148.6410.2812.07
    505.707.238.9310.8012.8515.10
    1004.466.438.7511.4314.4617.86
    1.4085010.6511.211.7612.3213.0013.50
    10012.0014.0816.3318.7521.3324.08
    DownLoad: CSV

    表 4  各脉冲参数下产生的最大气泡直径尺寸及平均气泡尺寸

    Table 4.  The maximum bubble diameter size and average bubble size generated under each pulse parameter.

    电导率/(mS·cm–1)脉宽/μs最大气泡尺寸/平均气泡尺寸/ μm
    140.850/060/2385/27130/28145/31160/32
    100/0100/21135/27155/25190/28220/29
    5033/1680/2690/32130/39160/38220/37
    10024/14100/27130/37190/36200/44225/42
    14.08525/1440/2355/2470/2475/2590/23
    1035/1955/2365/2580/2595/28115/25
    5020/1840/22115/25135/28145/29200/31
    10035/1780/2590/28110/29175/33190/35
    1.4085015/1318/1420/1522/1425/1630/16
    10035/2042/1942/2152/2355/2462/22
    DownLoad: CSV
    Baidu
  • [1]

    Kornej J, Börschel C S, Benjamin E J, Schnabel R B 2020 Circ. Res. 127 4Google Scholar

    [2]

    Chen W, Zheng R, Baade P D, Zhang S, Zeng H, Bray F, Jemal A, Yu X Q, He J 2016 CA Cancer J. Clin. 66 115Google Scholar

    [3]

    Koruth J S, Kuroki K, Kawamura I, Brose R, Viswanathan R, Buck E D, Donskoy E, Neuzil P, Dukkipati S R, Reddy V Y 2020 Circ. Arrhythm. Electrophysiol. 13 e008303Google Scholar

    [4]

    Kuroki K, Whang W, Eggert C, Lam J, Leavitt J, Kawamura I, Reddy A, Morrow B, Schneider C, Petru J, Turagam M K, Koruth J S, Miller M A, Choudry S, Ellsworth B, Dukkipati S R, Neuzil P, Reddy V Y 2020 HeartRhythm 17 1528Google Scholar

    [5]

    Neven K, van Es R, van Driel V, van Wessel H, Fidder H, Vink A, Doevendans P, Wittkampf F 2017 Circ. Arrhythm. Electrophysiol. 10 e004672Google Scholar

    [6]

    van Driel V J H M, Neven K, van Wessel H, Vink A, Doevendans P A F M, Wittkampf F H M 2015 HeartRhythm 12 1838Google Scholar

    [7]

    Calkins H, Hindricks G, Cappato R, et al. 2018 EP Europace. 20 157Google Scholar

    [8]

    Li C Y, Li S N, Jiang C Y, Fu H, Liang M, Wang Z L, Zhong J Q, Zhou X H, Wu Q, Chang D, Wang Y, Zhou G Q, Liu W S, Song W, Sang C H, Long D Y, Du X, Dong J Z, Ma C S 2020 Pacing Clin Electrophysiol. 43 627Google Scholar

    [9]

    Tolga A, Kivanc Y, Tumer Erdem G, Serdar B, Christian-H H, Roland R T 2019 J. Atr. Fibrillation 12 2208Google Scholar

    [10]

    Chen X H, Ren Z G, Zhu T Y, Zhang X X, Peng Z Y, Xie H Y, Zhou L, Yin S Y, Sun J Y, Zheng S S 2015 Sci. Rep. 5 16233Google Scholar

    [11]

    Gómez-Barea M, García-Sánchez T, Ivorra A 2022 Sci. Rep. 12 16144Google Scholar

    [12]

    du Pré B C, van Driel V J, van Wessel H, Loh P, Doevendans P A, Goldschmeding R, Wittkampf F H, Vink A 2013 EP Europace 15 144Google Scholar

    [13]

    Lavee J, Onik G, Mikus P, Rubinsky B 2007 Heart Surg. Forum. 10 E162Google Scholar

    [14]

    Neven K, van Driel V, van Wessel H, van Es R, Doevendans P A, Wittkampf F 2014 HeartRhythm 11 1465Google Scholar

    [15]

    Wittkampf F H, Van Driel V J, Van Wessel H, Vink A, Hof I E, Gründeman P F, Hauer R N, Loh P 2011 J. Cardiovasc. Electrophysiol. 22 302Google Scholar

    [16]

    Wittkampf F H M, van Driel V J, van Wessel H, Neven K G E J, Gründeman P F, Vink A, Loh P, Doevendans P A 2012 Circ. Arrhythm. Electrophysiol. 5 581Google Scholar

    [17]

    Koruth J S, Kuroki K, Iwasawa J, Viswanathan R, Brose R, Buck E D, Donskoy E, Dukkipati S R, Reddy V Y 2020 EP Europace 22 434Google Scholar

    [18]

    Maan A, Koruth J 2022 Curr. Cardiol. Rep. 24 103Google Scholar

    [19]

    Reddy V Y, Koruth J, Jais P, Petru J, Timko F, Skalsky I, Hebeler R, Labrousse L, Barandon L, Kralovec S, Funosako M, Mannuva B B, Sediva L, Neuzil P 2018 JACC Clin Electrophysiol. 4 987Google Scholar

    [20]

    Arshad R N, Abdul-Malek Z, Munir A, Ahmad M H, Sidik M A B, Nawawi Z 2021 2021 IEEE International Conference on the Properties and Applications of Dielectric Materials (ICPADM) Johor Bahru, Malaysia, July 11–15 July, 2021 p250

    [21]

    Bardy G H, Coltorti F, Ivey T D, Alferness C, Rackson M, Hansen K, Stewart R, Greene H L 1986 Circulation 73 525Google Scholar

    [22]

    Kandušer M, Belič A, Čorović S, Škrjanc I 2017 Sci. Rep. 7 8115Google Scholar

    [23]

    Barak M, Katz Y 2005 CHEST 128 2918Google Scholar

    [24]

    Holt P M, Boyd E G 1986 Circulation 73 1029Google Scholar

    [25]

    Rowland E, Foale R, Nihoyannopoulos P, Perelman M, Krikler D M 1985 Heart 53 240Google Scholar

    [26]

    Deneke T, Jais P, Scaglione M, Schmitt R, Di Biase L, Christopoulos G, Schade A, Mügge A, Bansmann M, Nentwich K, Müller P, Krug J, Roos M, Halbfass P, Natale A, Gaita F, Haines D 2015 J. Cardiovasc. Electrophysiol. 26 455Google Scholar

    [27]

    Miyazaki S, Kajiyama T, Yamao K, Hada M, Yamaguchi M, Nakamura H, Hachiya H, Tada H, Hirao K, Iesaka Y 2019 Heart Rhythm 16 41Google Scholar

    [28]

    Miyazaki S, Watanabe T, Kajiyama T, Iwasawa J, Ichijo S, Nakamura H, Taniguchi H, Hirao K, Iesaka Y 2017 Circ. Arrhythm. Electrophysiol. 10 e005612Google Scholar

    [29]

    Warton J M 2012 Yearbook of Cardiology 2012 440Google Scholar

    [30]

    van Es R, Groen M H A, Stehouwer M, Doevendans P A, Wittkampf F H M, Neven K 2019 J. Cardiovasc. Electrophysiol. 30 2071Google Scholar

    [31]

    Osuna I A R, Cobelli P, Olaiz N 2022 Micromachines 13 1234Google Scholar

    [32]

    Zhang R B, Zheng N C, Liu H Y, Wang L M 2015 IEEE Trans. Plasma Sci. 43 610Google Scholar

    [33]

    Zhang R B, Li X, Wang Z Y 2019 IEEE Trans. Dielectr. Electr. Insul. 26 353Google Scholar

    [34]

    Bradley C J, Haines D E 2020 J. Cardiovasc. Electrophysiol. 31 2136Google Scholar

    [35]

    Zhang R B, Li X, Wang Z Y, Chen Z H, Du G 2018 Appl. Phys. Lett. 113 063701Google Scholar

    [36]

    Jinback H, Stewart M T, Cheek D S, Francischelli D E, Kirchhof N 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society Minneapolis, MN, September 3–6, 2009 p3381

    [37]

    Livia C, Sugrue A, Witt T, Polkinghorne M D, Maor E, Kapa S, Lehmann H I, DeSimone C V, Behfar A, Asirvatham S J, McLeod C J 2018 J. Am. Heart Assoc. 7 e009070Google Scholar

    [38]

    Niessen C, Igl J, Pregler B, Beyer L, Noeva E, Dollinger M, Schreyer A G, Jung E M, Stroszczynski C, Wiggermann P 2015 J. Vasc. Interv. Radiol. 26 694Google Scholar

    [39]

    Zager Y, Kain D, Landa N, Leor J, Maor E 2016 PLoS One 11 e0165475Google Scholar

    [40]

    Zimmerman A, Grand D, Charpentier K 2017 J. Hepatocell. Carcinoma 4 49Google Scholar

    [41]

    王力, 陈林, 丰明俊, 马青 2009 北京生物医学工程 28 143Google Scholar

    Wang L, Chen L, Feng M J, Ma Q 2009 Beijing Biomedical Engineering 28 143Google Scholar

    [42]

    Rubinsky L, Guenther E, Mikus P, Stehling M, Rubinsky B 2016 Technol. Cancer Res. Treat. 15 NP95Google Scholar

    [43]

    张若兵, 杜钢, 傅贤, 梁大鹏 2014 高电压技术 40 1889Google Scholar

    Zhang R B, Du G, Fu X, Liang D P 2014 High Voltage Eng. 40 1889Google Scholar

    [44]

    Shneider M N, Pekker M 2013 J. Appl. Phys. 114 214906Google Scholar

    [45]

    李元, 李林波, 温嘉烨, 倪正全, 张冠军 2021 70 024701Google Scholar

    Li Y, Li L B, Wen J Y, Ni Z Q, Zhang G J 2021 Acta Phys. Sin. 70 024701Google Scholar

    [46]

    Shneider M N, Pekker M 2013 Phys. Rev. E 87 043004Google Scholar

    [47]

    姚陈果, 郑爽, 赵亚军, 刘红梅, 王艺麟, 董守龙 2020 高电压技术 46 1830Google Scholar

    Yao C G, Zheng S, Zhao Y J, Liu H M, Wang Y L, Dong S L 2020 High Voltage Eng. 46 1830Google Scholar

    [48]

    Chung E M L, Banahan C, Patel N, Janus J, Marshall D, Horsfield M A, Rousseau C, Keelan J, Evans D H, Hague J P 2015 PLoS One 10 e0122166Google Scholar

    [49]

    Haines D E, Stewart M T, Ahlberg S, Barka N D, Condie C, Fiedler G R, Kirchhof N A, Halimi F, Deneke T 2013 Circ. Arrhythm. Electrophysiol. 6 16Google Scholar

  • [1] Wang Meng-Sha, Xu Qiang, Nie Teng-Fei, Luo Xin-Yi, Guo Lie-Jin. Effect of electrolyte concentration on bubble evolution and mass transfer characteristics on surface of photoelectrode. Acta Physica Sinica, 2024, 73(18): 188201. doi: 10.7498/aps.73.20240533
    [2] Zhang Fu-Ping, Li Xi-Qin, Du Jin-Mei, Liu Yu-Sheng, Ye Fu-Qing. Failure distribution and reliable analysis of ferroelectric ceramics under pulsed electric field. Acta Physica Sinica, 2024, 73(10): 107701. doi: 10.7498/aps.73.20231354
    [3] Wurilege, Naranmandula. Interaction of two bubbles with mass transfer heat transfer and diffusion effects. Acta Physica Sinica, 2023, 72(19): 194703. doi: 10.7498/aps.72.20230863
    [4] Meng Xing-Rou, Liu Ruo-Qi, He Ya-Feng, Deng Teng-Kun, Liu Fu-Cheng. Cross-diffusion-induced transitions between Turing patterns in reaction-diffusion systems. Acta Physica Sinica, 2023, 72(19): 198201. doi: 10.7498/aps.72.20230333
    [5] Zhuang Jie, Han Rui, Ji Zhen-Yu, Shi Fu-Kun. Uncertainty in prediction of pulsed field ablation caused by parameter diversity in quantifying conductivity models. Acta Physica Sinica, 2023, 72(14): 147701. doi: 10.7498/aps.72.20230203
    [6] Ju Xiao-Lu, Li Ke, Yu Fu-Cheng, Xu Ming-Wei, Deng Biao, Li Bin, Xiao Ti-Qiao. Move contrast X-ray imaging of electrochemical reaction process in electrolytic cell. Acta Physica Sinica, 2022, 71(14): 144101. doi: 10.7498/aps.71.20220339
    [7] Zhong Cheng, Chen Zhi-Quan, Yang Wei-Guo, Xia Hui. Influence of electrolytes on diffusion properties of colloidal particles in dense suspensions. Acta Physica Sinica, 2013, 62(21): 214207. doi: 10.7498/aps.62.214207
    [8] Shen Li, Ye Shi-Wei, Dai Chang-Jian. Experiment study of ionization limit shift of europium atoms in electric fields. Acta Physica Sinica, 2012, 61(6): 063301. doi: 10.7498/aps.61.063301
    [9] Yuan Qiang, Hu Dong-Xia, Zhang Xin, Zhao Jun-Pu, Hu Si-De, Huang Wen-Hui, Wei Xiao-Feng. Performance of shock ignition with varying ignitor. Acta Physica Sinica, 2011, 60(4): 045207. doi: 10.7498/aps.60.045207
    [10] Zhang Fu-Ping, Du Jin-Mei, Liu Yu-Sheng, Liu Yi, Liu Gao-Min, He Hong-Liang. Failure mechanism of PZT 95/5 under direct currentand pulsed electric field. Acta Physica Sinica, 2011, 60(5): 057701. doi: 10.7498/aps.60.057701
    [11] Chen Huai-Jun, Mo Jia-Qi. Singularly perturbed nonlinear reaction diffusion problem with two parameters. Acta Physica Sinica, 2010, 59(7): 4409-4412. doi: 10.7498/aps.59.4409
    [12] Lü Yao-Ping, Gu Guo-Feng, Lu Hua-Chun, Dai Yu, Tang Guo-Ning. Refraction of reaction-diffusion plane wave for different diffusion coefficients. Acta Physica Sinica, 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [13] Hu Yi, Ge Yun, Zhang Dong, Zheng Hai-Rong, Gong Xiu-Fen. Microbubble displacement under ultrasonic chirp excitation. Acta Physica Sinica, 2009, 58(7): 4746-4751. doi: 10.7498/aps.58.4746
    [14] Wu Jun-Lin, Huang Xin-Min. Generalized master equation for the nonextensive reaction-diffusion systems. Acta Physica Sinica, 2006, 55(12): 6234-6237. doi: 10.7498/aps.55.6234
    [15] He Shou-Jie, Chen Qi-Dai, Li Xue-Chen, Ai Xi-Cheng, Zhang Jian-Ping, Wang Long. The light pulses and the spectra of conical bubbles sonoluminescence. Acta Physica Sinica, 2005, 54(2): 977-981. doi: 10.7498/aps.54.977
    [16] LI ZI-RONG, MENG QING-AN, GUAN DI-HUA, WANG GANG. NMR STUDIES ON SELF DIFFUSION COEFFICIENTS OF LITHIUM IONS IN PAN-BASED GEL POLYMER ELECTROLYTES. Acta Physica Sinica, 1999, 48(6): 1175-1178. doi: 10.7498/aps.48.1175
    [17] TAO YUE-QUN, QIU LI-JIAN. NUMERICAL ANALYSIS FOR PELLET ABLATION (I). Acta Physica Sinica, 1988, 37(10): 1672-1677. doi: 10.7498/aps.37.1672
    [18] CHEN SHI-GANG. FLUCTUATIONS IN REACTION-DIFFUSION SYSTEM. Acta Physica Sinica, 1982, 31(1): 50-57. doi: 10.7498/aps.31.50
    [19] ZHANG CHENG-FU, WU WEI-MIN. THE AMBIPOLAR ELECTRIC FIELD AND THE AMBIPOLAR DIFFUSION IN A STOCHASTIC MAGNETIC FIELD. Acta Physica Sinica, 1981, 30(3): 333-343. doi: 10.7498/aps.30.333
    [20] CHEN LIANG-HENG. IRREVERSIBLE CHEMICAL REACTION-DIFFUSION EQUATION. Acta Physica Sinica, 1981, 30(7): 857-865. doi: 10.7498/aps.30.857
Metrics
  • Abstract views:  2772
  • PDF Downloads:  92
  • Cited By: 0
Publishing process
  • Received Date:  23 March 2023
  • Accepted Date:  04 August 2023
  • Available Online:  05 September 2023
  • Published Online:  05 November 2023

/

返回文章
返回
Baidu
map