Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Improvement of zero-dimensional system model and its analysis and prediction of steady-state operating regime on EAST

Yu Ming-Sheng Qian Jin-Ping Ding Si-Ye Ren Qi-Long Ye Yang Wan Bao-Nian

Citation:

Improvement of zero-dimensional system model and its analysis and prediction of steady-state operating regime on EAST

Yu Ming-Sheng, Qian Jin-Ping, Ding Si-Ye, Ren Qi-Long, Ye Yang, Wan Bao-Nian
PDF
HTML
Get Citation
  • The zero-dimensional system model has been widely used for predicting and analyzing plasma performance in fusion reactors and designing next-generation tokamaks. These models can quickly scan and calculate various parameter, and can be used for the design of device reference operation point and preparation for more accurate one-dimensional numerical simulations. They can also be used to predict device operational parameters and heating/ current drive conditions, providing a quick reference for experimental design. However, relying on physical approximations and empirical formulas can lead to significant systematic errors. In this work we introduce a plasma equilibrium program to obtain the main plasma profile parameters and their calculations based on magnetic surface information. The bootstrap current calculation is improved by introducing the relationship between the bootstrap current coefficient of the Sauter model and the collision rate change. The improved model is validated by using experimental results from EAST, and the results of the zero-dimensional system model calculations are found to be consistent with the results of kinetic equilibrium analysis. Based on the improved model and existing experimental results, the required heating/current drive power and achievable normalized beta for steady-state, long-pulse operation of the 500 kA plasma current on EAST are analyzed and predicted. The calculation results show that EAST can achieve steady-state operation at the 500 kA plasma current with bootstrap current fraction over 50% in the parameter range of 7.0–9.5 MW heating/driving power, $ {H}_{98} $is 1.25–1.35, and $ {f}_{{\rm{n}}{\rm{G}}} $~0.9. Additionally, to maintain the total non-inductive current, the total heating/current drive power needs to be highly sensitive to plasma confinement and density, which is the most effective way to increase the bootstrap current fraction and reduce the peak heat loads on the divertor. Improving plasma confinement is the most effective way to achieve high bootstrap current fraction and reduce the peak heat load on the divertor. In this work, we also analyze the effect of heating power ratio on the bootstrap current, showing that adjusting the power ratio can change the bootstrap current fraction, and we further analyze the long-pulse operating region of EAST with a plasma current of 500 kA. In the range of 9.5 MW total heating/current driving power, $ {H}_{98} $ is 1.0–1.4, and normalized electron density $ {f}_{{\rm{n}}{\rm{G}}} $ is 0.8–1.0, high-performance long-pulse or fully non-inductive steady-state operation can be achieved, supporting the research on the physics of ITER and CFETR steady-state operation modes. In general, improving the plasma confinement performance can achieve fully non-inductive operation at lower heating/driving power while maintaining the same plasma parameters, and expand the plasma operating regime, which is the most effective way to achieve high-parameter steady-state operation of the plasma.
      Corresponding author: Qian Jin-Ping, jpqian@ipp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975274).
    [1]

    Chan V S, Stambaugh R D, Garofalo A M, Chu M S, Fisher R K, Greenfield C M, Humphreys D A, Lao L L, Leuer J A, Petrie T W, Prater R, Staebler G M, Snyder P B, St John H E, Turnbull A D, Wong C P C, Van Zeeland M A 2010 Fusion Sci. Technol. 57 66Google Scholar

    [2]

    Johner J 2011 Fusion Sci. Technol. 59 308Google Scholar

    [3]

    Kovari M, Kemp R, Lux H, Knight P, Morris J, Ward D J 2014 Fusion Eng. Des. 89 3054Google Scholar

    [4]

    Wan B N, Ding S Y, Qian J P, Li G Q, Xiao B J, Xu G S 2014 IEEE Trans. Plasma Sci. 42 495Google Scholar

    [5]

    Ding S Y, Wan B N, Wang L, Sun Y W, Lyu B 2016 IEEE Trans. Plasma Sci. 44 2502Google Scholar

    [6]

    Zohm H 2010 Fusion Sci. Technol. 58 613Google Scholar

    [7]

    Zohm H 2019 J. Fusion Energy 38 3Google Scholar

    [8]

    Stambaugh R D, Lao L L, Lazarus E A 1992 Nucl. Fusion 32 1642Google Scholar

    [9]

    Loarte A, Bosch S, Chankin A, Clement S, Herrmann A, Hill D, Itami K, Lingertat J, Lipschultz B, McCormick K, Monk R, Porter G D, Shimada M, Sugihara M 1999 J. Nucl. Mater. 266–269 587

    [10]

    Liu-Lin Y R, Stambaugh R D 2004 Nucl. Fusion 44 548Google Scholar

    [11]

    Greenwald M, Terry J L, Wolfe S M, Ejima S, Bell M G, Kaye S M, Neilson G H 1988 Nucl. Fusion 28 2199Google Scholar

    [12]

    Liu-Lin Y R, Chan V, Prater R 2003 Phys. Plasmas 10 4064Google Scholar

    [13]

    Tonon G 1994 ISPP Workshop on Tokamak Concept Improvement Varenna, Italy, August 29–September 3, 1994 p31

    [14]

    Fowler R, Holmes J, Rome J 1979 NFREYA: a Monte Carlo Beam Deposition Code for Noncircular Tokamak Plasmas Report

    [15]

    ITER E 1999 Nucl. Fusion 39 2175Google Scholar

    [16]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M, Post D E 1990 Nucl. Fusion 30 1999Google Scholar

    [17]

    Dragojlovic Z, Raffray A R, Najmabadi F, Kessel C, Waganer L, El-Guebaly L, Bromberg L 2010 Fusion Eng. Des. 85 243Google Scholar

    [18]

    Grad H, Rubin H 1958 Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (United Nations Geneva)

    [19]

    Shafranov V 1958 Soviet Physics JETP 6 1013

    [20]

    Sauter O, Angioni C, Liu-Lin Y R 1999 Phys. Plasmas 6 2834Google Scholar

    [21]

    Qian J, Wan B, Lao L L, Shen B, Sabbagh S A, Sun Y, Liu D, Xiao B, Ren Q, Gong X, Li J 2009 Plasma Sci. Technol. 11 142Google Scholar

    [22]

    Li G Q, Ren Q L, Qian J P, Lao L L, Ding S Y, Chen Y J, Liu Z X, Lu B, Zang Q 2013 Plasma Phys. Controlled Fusion 55 125008Google Scholar

    [23]

    朱翔 2018 博士学位论文 (合肥: 中国科学技术大学)

    Zhu X 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    Stambaugh R D, Chan V S, Garofalo A M, Sawan M, Humphreys D A, Lao L L, Leuer J A, Petrie I W, Prater R, Snyder P B, Smith J P, Wong C P C 2011 Fusion Sci. Technol. 59 279Google Scholar

    [25]

    Sauter O, Angioni C, Lin-Liu Y R 2002 Phys. Plasmas 9 5140Google Scholar

    [26]

    张家源 2022 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J Y 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [27]

    Zhang J, Qian J, Gong X, Zhang B, Wu M, Li M, Zang Q, Zhu X, Lyu B, Liu H, Liang R, Jia T, Hu Y, Wang Z 2022 Fusion Eng. Des. 184 113283Google Scholar

    [28]

    Hender T C, Wesley J C, Bialek J, et al. 2007 Nucl. Fusion 47 S128Google Scholar

    [29]

    Wan B N, Liang Y, Gong X Z, et al. 2019 Nucl. Fusion 59 112003Google Scholar

    [30]

    Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q, for the E T, Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [31]

    Gong X, Garofalo A M, Huang J, et al. 2019 Nucl. Fusion 59 086030Google Scholar

    [32]

    Zhuang G, Li G Q, Li J, Wan Y X, Liu Y, Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P, Xiao B J, the C D T 2019 Nucl. Fusion 59 112010Google Scholar

    [33]

    Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansky V, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696Google Scholar

    [34]

    Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 s203Google Scholar

  • 图 1  ONETWO动理学平衡分析[26] (红色线条)和零维系统模型(蓝色线条)分别对EAST炮号#90615在6540 ms时刻用Sauter模型计算的自举电流密度分布

    Figure 1.  The ONETWO kinetic equilibrium analysis[26] (red line) and the zero-dimensional system model (blue line) respectively calculated the bootstrap current density profile of EAST shot #90615 at 6540 ms using the Sauter model.

    图 2  对Sauter模型$ {\mathcal{L}}_{31} $部分与等离子体碰撞率的关系拟合, 黑线为$ {\mathcal{L}}_{31} $(来自文献[20]), 红线为拟合曲线

    Figure 2.  Fitting the relationship between the Sauter model $ {\mathcal{L}}_{31} $ part and the collision rate of the plasma, the black line represents $ {\mathcal{L}}_{31} $ (from Ref[20]), and the red line represents the fitting curve.

    图 3  EAST在500 kA等离子体电流在不同密度条件及不同能量约束改善因子下达到完全稳态运行所需要的辅助加热功率及所对应的自举电流份额

    Figure 3.  The auxiliary heating power required for EAST to achieve steady-state operation under different plasma current densities and different improvement factors of energy confinement, as well as the corresponding fraction of bootstrap current for each condition.

    图 4  对应图3中Case A, Case B, Case C三点的总的偏滤器热负荷以及内外偏滤器靶板峰值热负荷情况 (MW/m2)

    Figure 4.  The total divertor heat load and peak heat load on the inner and outer divertor target plates for points Case A, Case B, and Case C in Fig. 3 (unit: MW/m2).

    图 5  EAST在500 kA等离子体电流9.5 MW加热功率下, 不同的电子密度与能量约束改善因子时的长脉冲运行能力

    Figure 5.  EAST’s long-pulse operational capability under different electron densities and energy confinement improvement factors at 9.5 MW heating power and a plasma current of 500 kA.

    表 1  零维系统模型计算所对应的实验条件

    Table 1.  Experimental conditions corresponding to the zero-dimensional system model calculation.

    炮号#89790#90615#101449#94437
    辅助加热
    功率/MW
    离子回旋0.210.280.530
    电子回旋0.630.630.980.63
    低杂波1.31.781.41.08
    中性束0003.7
    总功率/MW2.142.692.915.41
    电子弦密度/(1019 m–3)3.84.74.14.5
    归一化密度$ {f}_{{\rm{n}}{\rm{G}}} $0.650.810.600.73
    等离子体电流/kA369370363366
    DownLoad: CSV

    表 2  模型计算结果与磁平衡反演/动理学平衡分析结果对比

    Table 2.  Comparison between the model calculation results and the magnetic equilibrium inversion/kinetic equilibrium analysis results.

    炮号物理量磁平衡反
    演/动理学
    平衡结果
    零维系统
    模型计算
    误差%
    #89790储能/kJ1751646.3
    $ {\beta }_{{\rm{N}}} $1.41.40.7
    $ {\beta }_{{\rm{P}}} $1.641.602.4
    $ {q}_{95} $6.56.155.4
    $ {f}_{{\rm{b}}{\rm{s}}} $0.40.437.5
    #90615储能/kJ1951864.6
    $ {\beta }_{{\rm{N}}} $1.571.476.4
    $ {\beta }_{{\rm{P}}} $1.81.884.4
    $ {q}_{95} $6.46.97.8
    $ {f}_{{\rm{b}}{\rm{s}}} $0.490.52.0
    #101449储能/kJ2312185.6
    $ {\beta }_{{\rm{N}}} $1.81.752.8
    $ {\beta }_{{\rm{P}}} $2.622.3410.7
    $ {q}_{95} $8.237.410.1
    $ {f}_{{\rm{b}}{\rm{s}}} $0.440.476.8
    #94437储能/kJ2432286.2
    $ {\beta }_{{\rm{N}}} $1.971.894.1
    $ {\beta }_{{\rm{P}}} $2.312.310.3
    $ {q}_{95} $6.927.24.0
    $ {f}_{{\rm{b}}{\rm{s}}} $0.450.498.9
    DownLoad: CSV

    表 3  Case A完全非感应运行条件下不同的功率配比对应的自举电流份额

    Table 3.  The fraction of bootstrap current corresponding to different power ratios under fully non-inductive operation conditions for Case A.

    离子回旋/MW低杂波/MW总加热/MW自举电流份额
    04.286.280.485
    0.54.106.600.492
    1.03.956.950.497
    1.53.857.350.504
    2.03.757.750.513
    2.53.658.150.520
    3.03.518.510.526
    3.53.408.900.533
    4.03.309.300.539
    DownLoad: CSV
    Baidu
  • [1]

    Chan V S, Stambaugh R D, Garofalo A M, Chu M S, Fisher R K, Greenfield C M, Humphreys D A, Lao L L, Leuer J A, Petrie T W, Prater R, Staebler G M, Snyder P B, St John H E, Turnbull A D, Wong C P C, Van Zeeland M A 2010 Fusion Sci. Technol. 57 66Google Scholar

    [2]

    Johner J 2011 Fusion Sci. Technol. 59 308Google Scholar

    [3]

    Kovari M, Kemp R, Lux H, Knight P, Morris J, Ward D J 2014 Fusion Eng. Des. 89 3054Google Scholar

    [4]

    Wan B N, Ding S Y, Qian J P, Li G Q, Xiao B J, Xu G S 2014 IEEE Trans. Plasma Sci. 42 495Google Scholar

    [5]

    Ding S Y, Wan B N, Wang L, Sun Y W, Lyu B 2016 IEEE Trans. Plasma Sci. 44 2502Google Scholar

    [6]

    Zohm H 2010 Fusion Sci. Technol. 58 613Google Scholar

    [7]

    Zohm H 2019 J. Fusion Energy 38 3Google Scholar

    [8]

    Stambaugh R D, Lao L L, Lazarus E A 1992 Nucl. Fusion 32 1642Google Scholar

    [9]

    Loarte A, Bosch S, Chankin A, Clement S, Herrmann A, Hill D, Itami K, Lingertat J, Lipschultz B, McCormick K, Monk R, Porter G D, Shimada M, Sugihara M 1999 J. Nucl. Mater. 266–269 587

    [10]

    Liu-Lin Y R, Stambaugh R D 2004 Nucl. Fusion 44 548Google Scholar

    [11]

    Greenwald M, Terry J L, Wolfe S M, Ejima S, Bell M G, Kaye S M, Neilson G H 1988 Nucl. Fusion 28 2199Google Scholar

    [12]

    Liu-Lin Y R, Chan V, Prater R 2003 Phys. Plasmas 10 4064Google Scholar

    [13]

    Tonon G 1994 ISPP Workshop on Tokamak Concept Improvement Varenna, Italy, August 29–September 3, 1994 p31

    [14]

    Fowler R, Holmes J, Rome J 1979 NFREYA: a Monte Carlo Beam Deposition Code for Noncircular Tokamak Plasmas Report

    [15]

    ITER E 1999 Nucl. Fusion 39 2175Google Scholar

    [16]

    Yushmanov P N, Takizuka T, Riedel K S, Kardaun O J W F, Cordey J G, Kaye S M, Post D E 1990 Nucl. Fusion 30 1999Google Scholar

    [17]

    Dragojlovic Z, Raffray A R, Najmabadi F, Kessel C, Waganer L, El-Guebaly L, Bromberg L 2010 Fusion Eng. Des. 85 243Google Scholar

    [18]

    Grad H, Rubin H 1958 Proceedings of the Second United Nations International Conference on the Peaceful Uses of Atomic Energy (United Nations Geneva)

    [19]

    Shafranov V 1958 Soviet Physics JETP 6 1013

    [20]

    Sauter O, Angioni C, Liu-Lin Y R 1999 Phys. Plasmas 6 2834Google Scholar

    [21]

    Qian J, Wan B, Lao L L, Shen B, Sabbagh S A, Sun Y, Liu D, Xiao B, Ren Q, Gong X, Li J 2009 Plasma Sci. Technol. 11 142Google Scholar

    [22]

    Li G Q, Ren Q L, Qian J P, Lao L L, Ding S Y, Chen Y J, Liu Z X, Lu B, Zang Q 2013 Plasma Phys. Controlled Fusion 55 125008Google Scholar

    [23]

    朱翔 2018 博士学位论文 (合肥: 中国科学技术大学)

    Zhu X 2018 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [24]

    Stambaugh R D, Chan V S, Garofalo A M, Sawan M, Humphreys D A, Lao L L, Leuer J A, Petrie I W, Prater R, Snyder P B, Smith J P, Wong C P C 2011 Fusion Sci. Technol. 59 279Google Scholar

    [25]

    Sauter O, Angioni C, Lin-Liu Y R 2002 Phys. Plasmas 9 5140Google Scholar

    [26]

    张家源 2022 博士学位论文 (合肥: 中国科学技术大学)

    Zhang J Y 2022 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [27]

    Zhang J, Qian J, Gong X, Zhang B, Wu M, Li M, Zang Q, Zhu X, Lyu B, Liu H, Liang R, Jia T, Hu Y, Wang Z 2022 Fusion Eng. Des. 184 113283Google Scholar

    [28]

    Hender T C, Wesley J C, Bialek J, et al. 2007 Nucl. Fusion 47 S128Google Scholar

    [29]

    Wan B N, Liang Y, Gong X Z, et al. 2019 Nucl. Fusion 59 112003Google Scholar

    [30]

    Wan B N, Gong X Z, Liang Y, Xiang N, Xu G S, Sun Y, Wang L, Qian J P, Liu H Q, Zhang B, Xia T Y, Huang J, Ding R, Zhang T, Zuo G Z, Sun Z, Zeng L, Zhang X J, Zang Q, Lyu B, Garofalo A M, Li G Q, Li K D, Yang Q Q, for the E T, Collaborators 2022 Nucl. Fusion 62 042010Google Scholar

    [31]

    Gong X, Garofalo A M, Huang J, et al. 2019 Nucl. Fusion 59 086030Google Scholar

    [32]

    Zhuang G, Li G Q, Li J, Wan Y X, Liu Y, Wang X L, Song Y T, Chan V, Yang Q W, Wan B N, Duan X R, Fu P, Xiao B J, the C D T 2019 Nucl. Fusion 59 112010Google Scholar

    [33]

    Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansky V, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696Google Scholar

    [34]

    Loarte A, Lipschultz B, Kukushkin A 2007 Nucl. Fusion 47 s203Google Scholar

  • [1] Yang Dong-Chao, Yi Li-Zhi, Ding Lin-Jie, Liu Min, Zhu Li-Ya, Xu Yun-Li, He Xiong, Shen Shun-Qing, Pan Li-Qing, John Q. Xiao. Nonequilibrium steady-state transport properties of magnons in ferromagnetic insulators. Acta Physica Sinica, 2024, 73(14): 147101. doi: 10.7498/aps.73.20240498
    [2] Zhong Wang-Shen, Chen Ye-Li, Qian Mu-Yang, Liu San-Qiu, Zhang Jia-Liang, Wang De-Zhen. Zero-dimensional numerical simulation of dry reforming of methane in atmospheric pressure non-equilibrium plasma. Acta Physica Sinica, 2021, 70(7): 075206. doi: 10.7498/aps.70.20201700
    [3] Han Xiao-Ying, Li Ling-Xiao, Dai Zhen-Sheng, Zheng Wu-Di, Gu Pei-Jun, Wu Ze-Qing. A general model for rapid simulation of hot dense plasmas under non-local thermal equilibrium conditions. Acta Physica Sinica, 2021, 70(11): 115202. doi: 10.7498/aps.70.20201946
    [4] Li Shi-Yao, Yu Ming. Thermal nonequilibrium detonation model of solid explosive. Acta Physica Sinica, 2018, 67(21): 214704. doi: 10.7498/aps.67.20172501
    [5] Liu Rui-Fen, Hui Zhi-Xin, Xiong Ke-Zhao, Zeng Chun-Hua. Correlated noise induced non-equilibrium phase transition in surface catalytic reaction model. Acta Physica Sinica, 2018, 67(16): 160501. doi: 10.7498/aps.67.20180250
    [6] Liu Jian-Qiang, Wang Xu-Yang, Bai Zeng-Liang, Li Yong-Min. Highprecision auto-balance of the time-domain pulsed homodyne detector. Acta Physica Sinica, 2016, 65(10): 100303. doi: 10.7498/aps.65.100303
    [7] Ye Jing-Jing, Li Ke-Ping, Jin Xin-Min. Simulation of optimal control of train movement based on car-following model. Acta Physica Sinica, 2014, 63(7): 070202. doi: 10.7498/aps.63.070202
    [8] Zhao Peng-Cheng, Liao Cheng, Yang Dang, Zhong Xuan-Ming, Lin Wen-Bin. High power microwave breakdown in gas using the fluid model with non-equilibrium electron energy distribution function. Acta Physica Sinica, 2013, 62(5): 055101. doi: 10.7498/aps.62.055101
    [9] Zhang Jia-Ming, Xu Xiao-Dong, Sun Bao-Hua. A model for rp-process within the (p,)-(,p) equilibrium approximation and its application. Acta Physica Sinica, 2013, 62(13): 132501. doi: 10.7498/aps.62.132501
    [10] Fu Dong, Wang Xue-Min, Liu Jian-Min. Investigation of phase equilibria and nucleation for supercritical carbon dioxide and model copolymer mixtures. Acta Physica Sinica, 2009, 58(5): 3022-3027. doi: 10.7498/aps.58.3022
    [11] Zhang Kai-Cheng. Nonequilibrium properties of Sherrington-Kirkpatric spin glass model. Acta Physica Sinica, 2009, 58(8): 5673-5678. doi: 10.7498/aps.58.5673
    [12] Liu Su-Hua, Tang Jia-Shi. Anti-control of Hopf bifurcation at zero equilibrium of 4D Qi system. Acta Physica Sinica, 2008, 57(10): 6162-6168. doi: 10.7498/aps.57.6162
    [13] Feng Shi-De, Zhong Lin-Hao, Gao Shou-Ting, Dong Ping. Equilibrium distribution boundary condition in lattice Boltzmann model and numerical simulation of Darcy-Forcheimer drag for fluid flow across a square cylinder array. Acta Physica Sinica, 2007, 56(3): 1238-1244. doi: 10.7498/aps.56.1238
    [14] Mu Zong-Xin, Li Guo-Qing, Qin Fu-Wen, Huang Kai-Yu, Che De-Liang. The model of the magnetic mirror effect in the unbalanced magnetron sputtering ion beams. Acta Physica Sinica, 2005, 54(3): 1378-1384. doi: 10.7498/aps.54.1378
    [15] Mu Zong-Xin, Li Guo-Qing, Che De-Liang, Huang Kai-Yu, Liu Cui. Investigation of the model of the discharge properties of the unbalanced magnetron sputtering system. Acta Physica Sinica, 2004, 53(6): 1994-1999. doi: 10.7498/aps.53.1994
    [16] SHAO YUAN-ZHI, LAN TU, LIN GUANG-MING. DYNAMICAL TRANSITION AND TRICRITICAL POINTS OF 3D KINETIC ISING SPIN SYSTEM . Acta Physica Sinica, 2001, 50(5): 942-947. doi: 10.7498/aps.50.942
    [17] GONG JIA-MIN, LIU JUAN, FANG QIANG, WANG YONG-CHANG. THE ANALYTICAL MODEL OF SRS IN SINGLE-MODE SILICA FIBER IN DENSITY WAVELENGTH DI VISION MULTIPLEXED OPTICAL COMMUNICATION SYSTEM. Acta Physica Sinica, 2000, 49(7): 1287-1291. doi: 10.7498/aps.49.1287
    [18] YANG YUAN, DAI JIAN-HUA, ZHANG HONG-JUN. THE DYNAMICAL BEHAVIOR OF A DISCRETE MODEL OF OPTICAL BISTABLE SYSTEM. Acta Physica Sinica, 1994, 43(5): 699-706. doi: 10.7498/aps.43.699
    [19] LI FU-BIN. CONSTITUTION OF THE MODEL OF NONEQUILIBRIUM PHASE TRANSITION BY THE CELLULAR AUTOMATA APPROACH. Acta Physica Sinica, 1992, 41(11): 1837-1841. doi: 10.7498/aps.41.1837
    [20] YAN SHI-JIAN, LI ZHAN-BING. THE STOCHASTIC MODELS FOR NON-EQUILIBRIUM SYSTEMS AND FORMULATION OF MASTER EQUATIONS. Acta Physica Sinica, 1980, 29(2): 139-152. doi: 10.7498/aps.29.139
Metrics
  • Abstract views:  2990
  • PDF Downloads:  52
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2023
  • Accepted Date:  04 April 2023
  • Available Online:  11 April 2023
  • Published Online:  05 June 2023

/

返回文章
返回
Baidu
map