Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mesoscopic study on effect of electric field and heater characteristics on saturated pool boiling heat transfer

Hu Jian Zhang Sen Lou Qin

Citation:

Mesoscopic study on effect of electric field and heater characteristics on saturated pool boiling heat transfer

Hu Jian, Zhang Sen, Lou Qin
PDF
HTML
Get Citation
  • The phase change lattice Boltzmann (LB) model combined with the electric field model is employed to investigate the heat transfer performance of saturated pool boiling. Particular attention is paid to the influence of heater surface wettability and heater length on bubble behaviors, including generation, merging, and fracture during boiling in a uniform electric field. Moreover, the effects of the bubble behavior on heat transfer performance are also investigated. The study results indicate that the enhancement of boiling heat transfer by the electric field is dependent on both the heater length and the wettability. In the case of a hydrophilic surface, when the heater length $L_H^*\leqslant 6.25$, the bubble interaction force generated on the heater surface during boiling is weak due to the small size of the heater. Thus the effect of a uniform electric field on the bubble dynamic behaviors is mainly manifested by reducing the bubble size. As a result, the whole boiling phase is suppressed in this case. In the case of $6.25 < L_H^*\leqslant9.375$, the uniform electric field enhances the critical heat flux (CHF), and the enhancement degree increases with electric field strength increasing. This can be attributed to the longer heater providing sufficient space for bubble generation, resulting in increased bubble nucleation sites and stronger interaction forces between bubbles. On the other hand, the distance between adjacent bubbles increases with the heater length increasing,thus further contributing to the improved CHF percentage. When $L_H^*>9.375$, the rewetting resistance increases with heater length increasing. So the vapor generated in the boiling process is prone to be closely adhered to the heating surface under the action of electric field force, forming a thin layer of vapor on the heater surface. The vapor not only increases the heat transfer thermal resistance between the solid and the fluid but also creates no vortex near the bubble. This is not conducive to the movement of the bubble to the middle of the heater, thereby slowing down the heat mass exchange between the hot fluid on the heating surface and the colder fluid on both sides. As a result, the improved percentage of CHF decreases gradually with the increase in the heater length. In the case of hydrophobic surfaces, the increased percentage of CHF initially increases with heater length increasing and then decreases. However, comparing with the hydrophilic surface, the increase of the heater source length corresponds to the beginning of the decrease of critical heat flux.
      Corresponding author: Zhang Sen, zhangsen6912@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51976128) and the Shanghai Pujiang Talent Program, China (Grant No. 22PJD047)
    [1]

    张海松, 徐进良, 朱鑫杰 2021 70 044401Google Scholar

    Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401Google Scholar

    [2]

    曹春蕾, 何孝天, 马骁婧, 徐进良 2021 70 134703Google Scholar

    Cao C L, He X T, Ma X Q, Xu J L 2021 Acta Phys. Sin. 70 134703Google Scholar

    [3]

    曾建邦, 李隆键, 廖全, 蒋方明 2011 60 066401Google Scholar

    Zeng J B, Li L J, Liao Q, Jiang F M 2011 Acta Phys. Sin. 60 066401Google Scholar

    [4]

    Gong S, Cheng P 2015 Int. J. Heat Mass Transfer 85 635Google Scholar

    [5]

    Lou A Q, Wang H, Li L 2023 Phys. Fluids 35 013316Google Scholar

    [6]

    赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪 2019 68 244401Google Scholar

    Zhao K, She Y Z, Jiao Y L, Qin J, Zhang Z H 2019 Acta Phys. Sin. 68 244401Google Scholar

    [7]

    Clubb L 1916 UK Patent 100796 [1916-07-09

    [8]

    Madadnia J, Koosha H 2003 Exp. Therm. Fluid Sci. 27 145Google Scholar

    [9]

    Gao M, Cheng P, Quan X J 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [10]

    Dong W, Li R Y, Yu H L, Yan Y Y 2006 Exp. Therm. Fluid Sci. 30 579Google Scholar

    [11]

    Zu Y Q, Yan Y Y 2009 Int. J. Heat Mass Transfer 30 761

    [12]

    Quan X J, Gao M, Cheng P, Li J S 2015 Int. J. Heat Mass Transfer 85 595Google Scholar

    [13]

    Liu B, Garivalis A I, Cao Z, Zhang Y, Wei J 2022 Int. J. Heat Mass Transfer 183 122154Google Scholar

    [14]

    Garivalis A I, Manfredini G, Saccone G, Di Marco P, Kossolapov A, Bucci M 2021 NPJ Microgravity 7 37Google Scholar

    [15]

    Nie L R, Yu L, Zheng Z, Shu C 2013 Phys. Rev. E 87 062142Google Scholar

    [16]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [17]

    Chen R Y, Tong L M, Nie L R, Wang C J, Pan W L 2017 Physica A 468 532Google Scholar

    [18]

    Du W, Kao J K, Shi Z, Nie L R 2023 Chin. Phys. B 32 020505Google Scholar

    [19]

    李迎雪, 王浩原, 娄钦 2022 应用数学和力学 43 727Google Scholar

    Li Y X, Wang H Y, Lou Q 2022 Appl. Math. Mech. 43 727Google Scholar

    [20]

    Songoro H 2015 Ph.D. Dissertation (Darmstadt: Technische Universitat)

    [21]

    Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S W J, Delgado A 2007 J. Comput. Phys. 227 1267Google Scholar

    [22]

    Pandey V, Biswas G, Dalal A 2016 Phys. Fluids 28 052102Google Scholar

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [24]

    Gong S, Cheng P 2017 Int. Commun. Heat Mass Transfer 87 61Google Scholar

    [25]

    Ma X, Cheng P, Gong S, Quan X 2017 Int. J. Heat Mass Transfer 114 453Google Scholar

    [26]

    Feng Y, Li H, Guo K, Lei X, Zhao J 2019 Int. J. Heat Mass Transfer 135 885Google Scholar

    [27]

    张浏斌, 单彦广, 戎志成 2022 计算物理 39 12

    Zhang L B, Shan Y G, Rong Z C 2022 Chin. J. Comput. Phys. 39 12

    [28]

    Yao J D, Luo K, Wu J, Yi H L 2022 Phys. Fluids 34 013606Google Scholar

    [29]

    Li W X, Li Q, Chang H Z, Yu Y, Tang S 2022 Phys. Fluids 34 123327Google Scholar

    [30]

    Rainey K N, You S M 2001 Int. J. Heat Mass Transfer 44 2589Google Scholar

    [31]

    Lee S Y, Tong K K, Park C M, Kim M H, Jo H J 2022 Appl. Therm. Eng. 2 213

    [32]

    Zhang C, Cheng P, Hong F 2016 Int. J. Heat Mass Transfer 101 1331Google Scholar

    [33]

    Wang H Y, Lou Q, Liu G J, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [34]

    Gong S, Cheng P 2012 Int. J. Heat Mass Transfer 55 4923Google Scholar

    [35]

    Qian Y H, D'Humières1 D, Lallemand P 1992 EPL 17 479Google Scholar

    [36]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput Phys. 165 288Google Scholar

    [37]

    Panofsky W, Phillips M, Jauch J M 1956 AM. J. Phys. 24 416

    [38]

    He X, Ning L 2000 Comput. Phys. Commun. 129 158Google Scholar

    [39]

    Ding H, Spelt P 2007 Phys. Rev. E 75 046708Google Scholar

    [40]

    Li L, Chen C, Mei R, Mei M, Klausner J 2014 Phys. Rev. E 89 043308Google Scholar

  • 图 1  物理问题示意图

    Figure 1.  Diagram of the physical problem.

    图 2  (a)亲水表面和(b)疏水表面不同长度加热器的沸腾曲线

    Figure 2.  Boiling curves of heaters with different lengths: (a) Hydrophilic surfaces; (b) hydrophobic surfaces.

    图 3  $L_H^* = 3.125$, $t^* = 66.99$时刻, 不同加热温度下的气泡形态 (a) $T_\mathrm{b} = 0.98 T_\mathrm{c}$; (b) $T_\mathrm{b} = 1.00 T_\mathrm{c}$; (c) $T_\mathrm{b} = 1.02 T_\mathrm{c}$

    Figure 3.  The bubble morphology at $L_H^*=3.125$, $t^*=66.99$ moments with different heating temperatures: (a) $T_\mathrm{b}= $$ 0.98 T_\mathrm{c}$; (b) $T_\mathrm{b}=1.00 T_\mathrm{c}$; (c) $T_\mathrm{b}=1.02 T_\mathrm{c}$.

    图 4  $t^*=55.83, T_\mathrm{b}=0.98 T_\mathrm{c}$条件下, 不同长度加热器下沸腾的气泡形态和流场 (a) $L_H^*=6.25$; (b) $L_H^*=18.75$

    Figure 4.  Bubble morphology and flow field for boiling with different length heaters under $t^*=55.83, T_\mathrm{b}=0.98 T_\mathrm{c}$ conditions: (a) $L_H^*=6.25$; (b) $L_H^*=18.75$.

    图 5  亲水表面不同长度加热器在不同电场强度下的沸腾曲线 (a) $L_H^*=3.125$; (b) $L_H^*=6.25$; (c) $L_H^*=7.5$; (d) $L_H^*= $$ 9.375$; (e) $L_H^*=12.5$; (f) $L_H^*=18.75$

    Figure 5.  Boiling curves of heaters of different lengths on hydrophilic surfaces under different electric field strengths: (a) $L_H^*=3.125$; (b) $L_H^*=6.25$; (c) $L_H^*=7.5$; (d) $L_H^*=9.375$; (e) $L_H^*=12.5$; (f) $L_H^*=18.75$.

    图 6  $L_H^*=6.25$时, 在均匀电场强度$E=0, 0.16327$作用下 (a) $T_\mathrm{b}=0.97 T_\mathrm{c}$, 核态沸腾状态; (b) $T_\mathrm{b}=1.02 T_\mathrm{c}$, 膜态沸腾状态的气泡形态

    Figure 6.  The bubble morphology of (a) $T_\mathrm{b}=0.97 T_\mathrm{c}$, nucleated boiling state; (b) $T_\mathrm{b}=1.02 T_\mathrm{c}$, film boiling state under the action of uniform electric field strength $E=0, 0.16327$, $L_H^*=6.25$.

    图 7  不同长度加热器在电场强度$E=0, 0.10884$下的气泡形态对比 (a) $L_H^*=7.5$; (b) $L_H^*=9.375$; (c) $L_H^*=12.5$; (d) $L_H^*=18.75$

    Figure 7.  Comparison of bubble morphology of heaters with different lengths at electric field strength $E=0, 0.10884$: (a) $L_H^*=7.5$; (b) $L_H^*=9.375$; (c) $L_H^*=12.5$; (d) $L_H^*=18.75$.

    图 8  不同电场强度下亲水表面加热器长度与临界热流密度的关系

    Figure 8.  Relationship between hydrophilic surface heater length and critical heat flow density at different electric field strengths.

    图 9  均匀电场强度$E=0.10884$作用下, $T_\mathrm{b}=0.995 T_\mathrm{c}$沸腾过程的空间平均热流密度随时间的变化

    Figure 9.  Spatially averaged heat flow density with time for $T_\mathrm{b}=0.995 T_\mathrm{c}$ boiling process under uniform electric field strength $E=0.10884$.

    图 10  均匀电场强度$E=0.10884$作用下, $T_\mathrm{b}=0.995 T_\mathrm{c}$沸腾状态的气泡形态演变、当前时刻气泡所受电场力和当前时刻流场分布 (a) $L_H^*=7.5$; (b) $L_H^*=9.375$

    Figure 10.  Evolution of bubble morphology, electric field force on the bubble at the current moment and flow field distribution at the current moment under the action of uniform electric field strength $E=0.10884$, $T_\mathrm{b}=0.995 T_\mathrm{c}$ boiling state: (a) $L_H^*=7.5$; (b) $L_H^*=9.375$.

    图 11  均匀电场强度$E=0.16327$作用下, $T_\mathrm{b}=0.995 T_\mathrm{c}$沸腾过程的空间平均热流密度随时间的变化

    Figure 11.  Spatially averaged heat flow density with time for $T_\mathrm{b}=0.995 T_\mathrm{c}$ boiling process under uniform electric field strength $E=0.16327$.

    图 12  均匀电场强度$E=0.16327$作用下, $T_\mathrm{b}=0.995 T_\mathrm{c}$沸腾状态的气泡形态演变、当前时刻气泡所受电场力和当前时刻流场分布 (a) $L_H^*=12.5$; (b) $L_H^*=18.75$

    Figure 12.  Evolution of bubble morphology, electric field force on the bubble at the current moment and flow field distribution at the current moment under the action of uniform electric field strength $E=0.16327$, $T_\mathrm{b}=0.995 T_\mathrm{c}$ boiling state: (a) $L_H^*=12.5$; (b) $L_H^*=18.75$.

    图 13  疏水表面不同长度加热器在不同电场强度下的沸腾曲线 (a) $L_H^*=3.125$; (b) $L_H^*=6.25$; (c) $L_H^*=7.5$; (d) $L_H^*= $$ 9.375$; (e) $L_H^*=12.5$; (f) $L_H^*=18.75$

    Figure 13.  Boiling curves of different lengths of heaters on hydrophobic surfaces under different electric field strengths: (a) $L_H^*= 3.125$; (b) $L_H^*=6.25$; (c) $L_H^*=7.5$; (d) $L_H^*=9.375$; (e) $L_H^*=12.5$, (f) $L_H^*=18.75$.

    图 14  $t_0^*=80.39$时刻, $T_\mathrm{b}=0.99 T_\mathrm{c}$时 (a) $E=0$; (b) $E= $$ 0.16327$的疏水表面对应的气泡动力学行为

    Figure 14.  The bubble dynamics behavior of the hydrophobic surface: (a) $E=0$, (b) $E=0.16327$ at the $t_0^*=80.39$, $T_\mathrm{b}=0.99 T_\mathrm{c}$.

    图 15  不同电场强度下疏水表面加热器长度与临界热流密度(CHF)的关系

    Figure 15.  Relationship between hydrophobic surface heater length and critical heat flow density (CHF) at different electric field strengths.

    表 1  格子单位与物理单位转换

    Table 1.  The unit conversion from lattice unit to physical unit.

    符号格子单
    位大小
    物理单位大小转换因子
    $ \rho_\mathrm{l} $5.426570.02 $ \mathrm{kg}/\mathrm{m}^3 $106.16 $ \mathrm{kg}/\mathrm{m}^3 $
    $ \rho_\mathrm{v} $0.811386.13 $ \mathrm{kg}/\mathrm{m}^3 $106.16 $ \mathrm{kg}/\mathrm{m}^3 $
    $ l_0 $16$ 4.72\times 10^{-6}\;\mathrm{m} $$ 2.95\times 10^{-7}\;\mathrm{m} $
    $ u_0 $0.035838.56 $ \mathrm{m/s} $1077.09 $ \mathrm{m/s} $
    $ t_0 $447.8$ 1.224\times 10^{-7}\;\mathrm{s} $$ 2.734\times 10^{-10}\;\mathrm{s} $
    ν0.06$ 0.19\times 10^{-4}\;\mathrm{m}^2/\mathrm{s} $$ 3.18\times 10^{-4}\;\mathrm{m}^2/\mathrm{s} $
    $ T_\mathrm{c} $0.1961647.2 $ \mathrm{K} $3300.36 $ \mathrm{K} $
    $ p_\mathrm{c} $0.1784$ 0.221\times 10^{8}\;\mathrm{Pa} $$ 1.24\times 10^{8}\;\mathrm{Pa} $
    $ c_\mathrm{vl} $4.01405.9 $\mathrm{J}/(\mathrm{kg}{\cdot} \mathrm{K})$351.48 $ \mathrm{J}/(\mathrm{kg}\cdot \mathrm{K}) $
    $ h_\mathrm{fg} $0.624$ 0.726\times 10^{6}\;\mathrm{J/kg} $$ 1.16\times 10^{6}\;\mathrm{J/kg} $
    $ \lambda_\mathrm{s} $32.556390.67 $\mathrm{W}/(\mathrm{m}{\cdot} \mathrm{K})$12.0 $ \mathrm{W}/(\mathrm{m}\cdot \mathrm{K}) $
    $ q_0 $0.01269$1.69 \times 10^{9}\;\mathrm{J}/({\rm{m} }^2{\cdot} {\rm{s} })$$1.33 \times 10^{11}\;\mathrm{J}/({\rm{m} }^2{\cdot} {\rm{s} })$
    $ \varepsilon_0\varepsilon_\mathrm{l} $2.236$ 1.98\times 10^{-11}\;\mathrm{F/m} $$ 8.85\times 10^{-12}\;\mathrm{F/m} $
    $ \varepsilon_0\varepsilon_\mathrm{v} $1$ 8.85\times 10^{-12}\;\mathrm{F/m} $$ 8.85\times 10^{-12}\;\mathrm{F/m} $
    V11096.96 V1096.96 V
    DownLoad: CSV
    Baidu
  • [1]

    张海松, 徐进良, 朱鑫杰 2021 70 044401Google Scholar

    Zhang H S, Xu J L, Zhu X J 2021 Acta Phys. Sin. 70 044401Google Scholar

    [2]

    曹春蕾, 何孝天, 马骁婧, 徐进良 2021 70 134703Google Scholar

    Cao C L, He X T, Ma X Q, Xu J L 2021 Acta Phys. Sin. 70 134703Google Scholar

    [3]

    曾建邦, 李隆键, 廖全, 蒋方明 2011 60 066401Google Scholar

    Zeng J B, Li L J, Liao Q, Jiang F M 2011 Acta Phys. Sin. 60 066401Google Scholar

    [4]

    Gong S, Cheng P 2015 Int. J. Heat Mass Transfer 85 635Google Scholar

    [5]

    Lou A Q, Wang H, Li L 2023 Phys. Fluids 35 013316Google Scholar

    [6]

    赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪 2019 68 244401Google Scholar

    Zhao K, She Y Z, Jiao Y L, Qin J, Zhang Z H 2019 Acta Phys. Sin. 68 244401Google Scholar

    [7]

    Clubb L 1916 UK Patent 100796 [1916-07-09

    [8]

    Madadnia J, Koosha H 2003 Exp. Therm. Fluid Sci. 27 145Google Scholar

    [9]

    Gao M, Cheng P, Quan X J 2013 Int. J. Heat Mass Transfer 67 984Google Scholar

    [10]

    Dong W, Li R Y, Yu H L, Yan Y Y 2006 Exp. Therm. Fluid Sci. 30 579Google Scholar

    [11]

    Zu Y Q, Yan Y Y 2009 Int. J. Heat Mass Transfer 30 761

    [12]

    Quan X J, Gao M, Cheng P, Li J S 2015 Int. J. Heat Mass Transfer 85 595Google Scholar

    [13]

    Liu B, Garivalis A I, Cao Z, Zhang Y, Wei J 2022 Int. J. Heat Mass Transfer 183 122154Google Scholar

    [14]

    Garivalis A I, Manfredini G, Saccone G, Di Marco P, Kossolapov A, Bucci M 2021 NPJ Microgravity 7 37Google Scholar

    [15]

    Nie L R, Yu L, Zheng Z, Shu C 2013 Phys. Rev. E 87 062142Google Scholar

    [16]

    Chen R Y, Pan W L, Zhang J Q, Nie L R 2016 Chaos 26 093113Google Scholar

    [17]

    Chen R Y, Tong L M, Nie L R, Wang C J, Pan W L 2017 Physica A 468 532Google Scholar

    [18]

    Du W, Kao J K, Shi Z, Nie L R 2023 Chin. Phys. B 32 020505Google Scholar

    [19]

    李迎雪, 王浩原, 娄钦 2022 应用数学和力学 43 727Google Scholar

    Li Y X, Wang H Y, Lou Q 2022 Appl. Math. Mech. 43 727Google Scholar

    [20]

    Songoro H 2015 Ph.D. Dissertation (Darmstadt: Technische Universitat)

    [21]

    Tomar G, Gerlach D, Biswas G, Alleborn N, Sharma A, Durst F, Welch S W J, Delgado A 2007 J. Comput. Phys. 227 1267Google Scholar

    [22]

    Pandey V, Biswas G, Dalal A 2016 Phys. Fluids 28 052102Google Scholar

    [23]

    Shan X, Chen H 1993 Phys. Rev. E 47 1815Google Scholar

    [24]

    Gong S, Cheng P 2017 Int. Commun. Heat Mass Transfer 87 61Google Scholar

    [25]

    Ma X, Cheng P, Gong S, Quan X 2017 Int. J. Heat Mass Transfer 114 453Google Scholar

    [26]

    Feng Y, Li H, Guo K, Lei X, Zhao J 2019 Int. J. Heat Mass Transfer 135 885Google Scholar

    [27]

    张浏斌, 单彦广, 戎志成 2022 计算物理 39 12

    Zhang L B, Shan Y G, Rong Z C 2022 Chin. J. Comput. Phys. 39 12

    [28]

    Yao J D, Luo K, Wu J, Yi H L 2022 Phys. Fluids 34 013606Google Scholar

    [29]

    Li W X, Li Q, Chang H Z, Yu Y, Tang S 2022 Phys. Fluids 34 123327Google Scholar

    [30]

    Rainey K N, You S M 2001 Int. J. Heat Mass Transfer 44 2589Google Scholar

    [31]

    Lee S Y, Tong K K, Park C M, Kim M H, Jo H J 2022 Appl. Therm. Eng. 2 213

    [32]

    Zhang C, Cheng P, Hong F 2016 Int. J. Heat Mass Transfer 101 1331Google Scholar

    [33]

    Wang H Y, Lou Q, Liu G J, Li L 2022 Int. J. Therm. Sci. 178 107554Google Scholar

    [34]

    Gong S, Cheng P 2012 Int. J. Heat Mass Transfer 55 4923Google Scholar

    [35]

    Qian Y H, D'Humières1 D, Lallemand P 1992 EPL 17 479Google Scholar

    [36]

    Guo Z L, Shi B C, Wang N C 2000 J. Comput Phys. 165 288Google Scholar

    [37]

    Panofsky W, Phillips M, Jauch J M 1956 AM. J. Phys. 24 416

    [38]

    He X, Ning L 2000 Comput. Phys. Commun. 129 158Google Scholar

    [39]

    Ding H, Spelt P 2007 Phys. Rev. E 75 046708Google Scholar

    [40]

    Li L, Chen C, Mei R, Mei M, Klausner J 2014 Phys. Rev. E 89 043308Google Scholar

  • [1] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, 2024, 73(9): 090201. doi: 10.7498/aps.73.20232026
    [2] Zhang Sen, Lou Qin. A mesoscopic numerical method for enhanced pool boiling heat transfer on conical surfaces under action of electric field. Acta Physica Sinica, 2024, 73(2): 026401. doi: 10.7498/aps.73.20231141
    [3] Li Chun-Xi, Ma Cheng, Ye Xue-Min. Thermocapillary migration of thin droplet on wettability-confined track. Acta Physica Sinica, 2023, 72(2): 024702. doi: 10.7498/aps.72.20221562
    [4] Wang Wen-Yuan, Xie Zhang, Hao Shao-Qian, Wu Feng-Min, Kou Jian-Long. Infiltration characteristics of nanochannels composed of graphene sheets in different directions. Acta Physica Sinica, 2022, 71(19): 196101. doi: 10.7498/aps.71.20220685
    [5] Peng Jia-Lue, Guo Hao, You Tian-Ya, Ji Xian-Bing, Xu Jin-Liang. Behavioral characteristics of droplet collision on Janus particle spheres. Acta Physica Sinica, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [6] Cao Chun-Lei, He Xiao-Tian, Ma Xiao-Jing, Xu Jin-Liang. Enhanced pool boiling heat transfer on soft liquid metal surface. Acta Physica Sinica, 2021, 70(13): 134703. doi: 10.7498/aps.70.20202053
    [7] Mei Tao, Chen Zhan-Xiu, Yang Li, Zhu Hong-Man, Miao Rui-Can. Molecular dynamics study of interface thermal resistance in asymmetric nanochannel. Acta Physica Sinica, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [8] Mei Tao, Chen Zhan-Xiu, Yang Li, Wang Kun, Miao Rui-Can. Effect of rough inner wall of nanochannel on fluid flow behavior. Acta Physica Sinica, 2019, 68(9): 094701. doi: 10.7498/aps.68.20181956
    [9] Ye Xue-Min, Zhang Xiang-Shan, Li Ming-Lan, Li Chun-Xi. Dynamics of evaporating drop on heated surfaces with different wettabilities. Acta Physica Sinica, 2018, 67(11): 114702. doi: 10.7498/aps.67.20180159
    [10] Xiong Qi-Yu, Dong Lei, Jiao Yun-Long, Liu Xiao-Jun, Liu Kun. Wettability of surfaces with different surface microstructures textured by laser. Acta Physica Sinica, 2015, 64(20): 206101. doi: 10.7498/aps.64.206101
    [11] Yao Yi, Zhou Zhe-Wei, Hu Guo-Hui. Movement of a droplet on a structured substrate: A dissipative particle dynamics simulation study. Acta Physica Sinica, 2013, 62(13): 134701. doi: 10.7498/aps.62.134701
    [12] Wang Tao, Li Jun-Jie, Wang Jin-Cheng. Phase field modeling of the influence of interfacial wettability and solid volume fraction on the kinetics of coarsening. Acta Physica Sinica, 2013, 62(10): 106402. doi: 10.7498/aps.62.106402
    [13] Zhao Ning, Huang Ming-Liang, Ma Hai-Tao, Pan Xue-Min, Liu Xiao-Ying. Viscosities and wetting behaviors of Sn-Cu solders. Acta Physica Sinica, 2013, 62(8): 086601. doi: 10.7498/aps.62.086601
    [14] Jiang Fang-Ming, Liao Quan, Zeng Jian-Bang, Li Long-Jian. Simulation of bubble growth process in pool boilingusing lattice Boltzmann method. Acta Physica Sinica, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [15] Shi Zi-Yuan, Hu Guo-Hui, Zhou Zhe-Wei. Lattice Boltzmann simulation of droplet motion driven by gradient of wettability. Acta Physica Sinica, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [16] Xiao Bo-Qi, Chen Ling-Xia, Jiang Guo-Ping, Rao Lian-Zhou, Wang Zong-Chi, Wei Mao-Jin. Mathematical analysis of pool boiling heat transfer. Acta Physica Sinica, 2009, 58(4): 2523-2527. doi: 10.7498/aps.58.2523
    [17] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(5): 3017-3021. doi: 10.7498/aps.56.3017
    [18] Wang Xiao-Dong, Dong Peng, Chen Sheng-Li, Yi Gui-Yun. The mechanism of self-assembly of polystyrene submicrospheres at water-air interface. Acta Physica Sinica, 2007, 56(3): 1831-1836. doi: 10.7498/aps.56.1831
    [19] WANG CHAO-YING, ZHAI GUANG-JIE, WU LAN-SHENG, MAI ZHEN-HONG, LI HONG, ZHANG HAI -FENG, DING BING-ZHE. EFFECT OF GRAVITY ON THE WETTING BEHAVIOR OF MOLTEN GaSb DROP. Acta Physica Sinica, 2000, 49(10): 2094-2100. doi: 10.7498/aps.49.2094
    [20] Yan Bei-Peng, Liu Jia-Lu, Zhang Ting-Qing, Wang Chao-Dong, Liang Wei-He, Zhang Bao-Feng. . Acta Physica Sinica, 1995, 44(3): 439-445. doi: 10.7498/aps.44.439
Metrics
  • Abstract views:  2876
  • PDF Downloads:  89
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2023
  • Accepted Date:  25 June 2023
  • Available Online:  06 July 2023
  • Published Online:  05 September 2023

/

返回文章
返回
Baidu
map