Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication technology of void embedded silicon-on-insulator substrate

Jia Xin Liu Qiang Mu Zhi-Qiang Zhou Hong-Yang Yu Wen-Jie

Citation:

Fabrication technology of void embedded silicon-on-insulator substrate

Jia Xin, Liu Qiang, Mu Zhi-Qiang, Zhou Hong-Yang, Yu Wen-Jie
PDF
HTML
Get Citation
  • Void embedded silicon-on-insulator (VESOI) substrate is a newly developed silicon-on-insulator (SOI) substrate for advanced complementary metal oxide semiconductor (CMOS) devices and integration technology. However, in the ion-cutting process for preparing the substrate, numerous hydrogen bubbles aggregate at the cut interface, which compresses the cavity structure and might cause the thin film above the cavity to be damaged and delaminated. Therefore, it is necessary to conduct in-depth research on the stress mechanism and process stability in the preparation of VESOI substrates. This study focuses on a single rectangular cavity structure and uses the fixed-supported beam theory to analyze its mechanical behavior during fabrication, and a three-dimensional model of cavity structure is constructed by using the finite element analysis tool. Through stress simulation, the failure mechanism of the cavity structure is identified, and the weak points are confirmed. The results show that the short side length (w), top silicon film thickness (t), and hydrogen bubble pressure are the main factors affecting the stress state of the top silicon film. When the w/t ratio exceeds 4–5, the silicon film will fracture owing to excessive tensile stress, and the fracture site is along the long side of the rectangular cavity. By increasing the thickness of the top silicon film slightly and adding support structures inside the cavity (to reduce w), this work successfully prepares high-quality 8-inch VESOI substrates that meet the requirements for the CMOS production line. The present study is expected to provide valuable idea for the development of integrated technologies relying on VESOI substrates.
      Corresponding author: Liu Qiang, qiangliu@mail.sim.ac.cn ; Yu Wen-Jie, casan@mail.sim.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2022YFB4401700) and the Shanghai Post-doctoral Excellence Program, China (Grant No. 2022677).
    [1]

    王阳元 2018 集成电路产业全书(下卷) (北京: 电子工业出版社) 第1543—1562页

    Wang Y Y 2018 Integrated Circuit Industry (Vol. 2) (Beijing: Electronic Industry Press) pp1543–1562 (in Chinese)

    [2]

    Kononchuk O, Nguyen B Y 2014 Silicon-on-Insulator (SOI) Technology: Manufacture and Applications (Britain: Woodhead Publishing) pp395–435

    [3]

    Liu Q, Mu Z Q, Liua C H, Zhao L T, Yu W J 2021 IEEE Electron Dev. Lett. 42 657Google Scholar

    [4]

    金成吉, 张苗苗, 李开轩, 刘宁, 玉虓, 韩根全 2021 微纳电子与智能制造 3 32

    Jin C J, Zhang M M, Li K X, Liu N, Yu X, Han G Q 2021 Micro/Nano Electron. Intell. Manuf. 3 32

    [5]

    张彦伟 2014 硕士学位论文 (湖南: 湘潭大学)

    Zhang Y Y 2014 M. S. Thesis (Hunan: Xiangtan University) (in Chinese)

    [6]

    贺琪, 顾祥, 纪旭明, 李金航, 赵晓松 2020 微处理机 41 41Google Scholar

    He Q, Gu X, Ji X M, Li J H, Zhao X S 2020 Microprocessors 41 41Google Scholar

    [7]

    林青 2004 博士学位论文 (上海: 中国科学院上海微系统与信息技术研究所)

    Lin Q 2004 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese)

    [8]

    Nguyen B Y, Celler G, Mazuré C 2009 JICS 4 51Google Scholar

    [9]

    Palkuti L, Alles M, Hughes H 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) Millbrae, CA, USA, October 6–9 2014 p1

    [10]

    Qing D Z, Jian W W, Jin H L, Shuai S, Xu M J, Xiang G, Gen S H, Bing L 2021 At. Energy Sci. Technol. 55 2151

    [11]

    古美良 胡明 2006 压电与声光 28 236

    Gu M L, Hu M 2006 Piezoelectr. Acoustoopt. 28 236

    [12]

    林成鲁 2003 半导体技术 9 39Google Scholar

    Lin C L 2003 Semicond. Technol. 9 39Google Scholar

    [13]

    刘强 2021 博士学位论文 (上海: 中国科学院上海微系统与信息技术研究所)

    Lin Q 2021 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese)

    [14]

    Liu Q, Zhou H Y, Jia X, Yang Y M, Mu Z Q, Wei X, Yu W J 2022 IEEE Electron Dev. Lett. 43 1814Google Scholar

    [15]

    Zhao L T, Liu Q, Liu C H, Chen L L, Yang Y M, Wei X, Mu Z Q, Yu W J 2021 IEEE Electron Dev. Lett. 42 1428Google Scholar

    [16]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第204—235页

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp204–235 (in Chinese)

    [17]

    Roundy D, Cohen M L 2001 Phys. Rev. B 64 212103

    [18]

    Dubois M M, Rignanese G M, Pardoen T, Charlier J C 2006 Phys. Rev. B 74 235203Google Scholar

    [19]

    Umeno Y, Kushima A, Kitamura T, Gumbsch P, Li J 2005 Phys. Rev. B 72 165431Google Scholar

    [20]

    Moriceau H, Mazen F, Braley C, Rieutord F, Tauzin A, Deguet C 2012 Nucl. Instrum. Methods Phys. Res. 277 84Google Scholar

    [21]

    Daval N, Schwarzenbach W, Moulin C, Bonnin O, Maleville C 2013 VLSI Technology, Systems, and Applications (VLSI-TSA), 2013 International Symposium Hsinchu, Taiwan, China, April 22–24, 2013 p1

    [22]

    Wang B, Gu B, Zhang H, Feng X 2016 Acta Mech. Solida Sin. 29 111Google Scholar

    [23]

    Lagahe-Blanchard C, Sousbie N, Sartori S, Moriceau H, Blondeau B 2003 Proc. Electrochem. Soc. 19 346

    [24]

    Hchbauer T 2001 Ph. D. Dissertation (Germany: University of Marburg)

    [25]

    Radu I 2022 Ph. D. Dissertation (Germany: Martin-Luther-Universität Halle-Wittenberg)

    [26]

    Yun C H, Cheung N W 2000 J. Microelectromech. Syst. 9 474Google Scholar

    [27]

    范钦珊, 殷雅俊, 唐靖林 2014 材料力学 (第3版) (北京: 清华大学出版社) 第126—204页

    Fan Q S, Yin Y J, Tang J L 2014 Material Mechanics (3rd Ed.) (Beijing: Tsinghua University Press) pp126–204 (in Chinese)

    [28]

    Craig Jr R R, Taleff E M 2020 Mechanics of Materials (State of New Jersey: John Wiley & Sons) pp286–293

    [29]

    Franssila S 2005 Introduction to Microfabrication (England: Wiley publication) pp174–182

    [30]

    Schmidt B, Wetzig K 2012 Ion Beams in Materials Processing and Analysis (Vienna: Springer) pp117–235

    [31]

    Nguyen P, Cayrefourcq I, Bourdelle K K, Boussagol A, Guiot E, Mohamed N B, Sousbie N, Akatsu T 2005 J. Appl. Phys. 97 083527

  • 图 1  (a) VESOI衬底制备工艺流程; (b)基于VESOI衬底可构造的10种内嵌空腔结构

    Figure 1.  (a) Fabrication process of VESOI substrate; (b) ten types of embedded void structures based on VESOI substrates.

    图 2  (a)基于VESOI衬底可制备无背栅SOI器件和GAA器件; (b)无背栅SOI器件和VESOI GAA器件的转移特性曲线; (c)两种器件的亚阈值斜率随漏极电流变化情况

    Figure 2.  (a) Backgate-free SOI and GAA devices based on VESOI substrates; (b) transfer characteristics of backgate-free SOI and GAA devices; (c) subthreshold swing vs. drain current for backgate-free SOI and GAA devices.

    图 3  (a)不同掺杂浓度对应的最大耗尽层宽度(顶层硅厚度); (b)硅材料应力应变曲线[17-19]

    Figure 3.  (a) The maximum depletion layer width (the thickness of top silicon) $ {X}_{{\rm{D}}{\rm{m}}} $ vs. doping concentrations $ {N}_{{\rm{A}}} $; (b) stress vs. strain under tensile load for silicon[17-19].

    图 4  (a)离子剥离试验中硅衬底表面的氢气泡剥离现象; (b)氢气泡与内嵌空腔可能存在的位置关系; (c), (d)简化的顶层硅受力示意图

    Figure 4.  (a) Hydrogen blistering phenomenon on the silicon substrate surface during ion-cutting experiment; (b) possible positions of the hydrogen blister with respect to the embedded void structure; (c), (d) simplified schematic of splitting force on top silicon.

    图 5  (a), (b)简支梁受力模型及其弯矩分布图; (c), (d)固支梁受力模型及其弯矩分布图

    Figure 5.  (a), (b) Schematic diagram of simply supported beam structure and the related bending moment distribution curve; (c), (d) schematic diagram of fixed beam structure and the related bending moment distribution curve.

    图 6  空腔宽度变化对空腔结构破损行为的影响

    Figure 6.  Effect of variations in chamber width on the breakage behavior of embedded void structure.

    图 7  (a)空腔结构几何模型(空腔区域); (b)空腔结构几何模型(固定约束区域)

    Figure 7.  (a) Geometric model of VESOI void structure (the area of chambers); (b) geometric model of VESOI void structure (the area of fixed constraint).

    图 8  正方形空腔和长方形空腔在均布载荷下的有限元应力仿真

    Figure 8.  Finite element stress simulation of square and rectangular voids under uniformly distributed load.

    图 9  顶硅薄膜上表面与下表面最大应力大小随空腔宽度w和薄膜厚度t的变化趋势 (a) t = 0.1 μm; (b) t = 0.25 μm; (c) t = 1 μm

    Figure 9.  Variation trend of the maximum stress magnitude on top/bottom surfaces of top silicon with different chamber widths and the top silicon thicknesses: (a) t = 0.1 μm; (b) t = 0.25 μm; (c) t = 1 μm.

    图 10  空腔上方顶层硅的上下表面第一主应力随空腔宽度$ w $的变化趋势(L表示矩形空腔一边的长度) (a) L = 4, w = 0.8 μm; (b) L = 4 μm, w = 1.2 μm; (c) L = 4 μm, w = 2.1 μm

    Figure 10.  Trend of the first principal stress on the top/bottom surfaces of the top silicon layer with respect to the chamber width $ w $: (a) L = 4 μm, w = 0.8 μm; (b) L = 4 μm, w = 1.2 μm; (c) L = 4 μm, w = 2.1 μm.

    图 11  空腔上方顶层硅应力极值随空腔结构参数变化的趋势

    Figure 11.  Stress level of top silicon layer with different thicknesses and chamber widths.

    图 12  剥离厚度对空腔上方顶层硅破损行为的影响 (a)不同氢离子注入能量下的顶层硅剥离厚度; (b)不同剥离厚度下的顶层硅破损情况

    Figure 12.  Influence of ion-cutting thickness on the top silicon breakage behavior: (a) Relationship between top silicon thickness and hydrogen ion implantation energy; (b) impact of different peel thicknesses on the top silicon layer damage.

    图 13  内嵌空腔结构对空腔上方顶层硅应力分布状态的影响 (a)正方形空腔; (b) 带支撑结构的正方形空腔; (c) 圆形空腔; (d)带支撑结构的圆形空腔

    Figure 13.  Impact of chamber structures on the stress distribution within top silicon: (a) Square chamber configuration; (b) square chamber configuration with an additional support pillar; (c) circular chamber configuration; (d) circular chamber configuration with an additional support pillar.

    图 14  (a) 8 in高质量VESOI衬底; (b)内含支撑柱结构, 边长为54.5 μm的正方形内嵌空腔; (c)面向高密度集成的密排内嵌空腔阵列

    Figure 14.  (a) High quality 8-in VESOI substrate; (b) the scanning electron microscope image of a square embedded void with 54.5 μm side length, where supporting pillars were set inside the chamber; (c) dense array of embedded void chambers for possible high-density integration.

    图 15  (a) Spacer掩膜法制备纳米级空腔型VESOI衬底; (b)各向异性湿法腐蚀制备纳米级空腔型VESOI衬底

    Figure 15.  (a) Fabrication of VESOI substrate with nano-meter voids using spacer pattern; (b) the fabrication of VESOI substrate with nano-meter voids using anisotropic wet etching method.

    表 1  空腔结构几何模型材料与结构参数

    Table 1.  Geometric and materials’ parameters of the VESOI void structure.

    参数名称数值
    空腔宽度 w/μm参数化扫描(0.1—10, 步长0.3)
    空腔长度 L/μm10, 4
    顶层硅厚度 t/μm参数化扫描(0.1—1, 步长0.1)
    杨氏模量E/GPa170
    泊松比 ν0.28
    密度$ \rho $/(kg·m–3)2329
    DownLoad: CSV
    Baidu
  • [1]

    王阳元 2018 集成电路产业全书(下卷) (北京: 电子工业出版社) 第1543—1562页

    Wang Y Y 2018 Integrated Circuit Industry (Vol. 2) (Beijing: Electronic Industry Press) pp1543–1562 (in Chinese)

    [2]

    Kononchuk O, Nguyen B Y 2014 Silicon-on-Insulator (SOI) Technology: Manufacture and Applications (Britain: Woodhead Publishing) pp395–435

    [3]

    Liu Q, Mu Z Q, Liua C H, Zhao L T, Yu W J 2021 IEEE Electron Dev. Lett. 42 657Google Scholar

    [4]

    金成吉, 张苗苗, 李开轩, 刘宁, 玉虓, 韩根全 2021 微纳电子与智能制造 3 32

    Jin C J, Zhang M M, Li K X, Liu N, Yu X, Han G Q 2021 Micro/Nano Electron. Intell. Manuf. 3 32

    [5]

    张彦伟 2014 硕士学位论文 (湖南: 湘潭大学)

    Zhang Y Y 2014 M. S. Thesis (Hunan: Xiangtan University) (in Chinese)

    [6]

    贺琪, 顾祥, 纪旭明, 李金航, 赵晓松 2020 微处理机 41 41Google Scholar

    He Q, Gu X, Ji X M, Li J H, Zhao X S 2020 Microprocessors 41 41Google Scholar

    [7]

    林青 2004 博士学位论文 (上海: 中国科学院上海微系统与信息技术研究所)

    Lin Q 2004 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese)

    [8]

    Nguyen B Y, Celler G, Mazuré C 2009 JICS 4 51Google Scholar

    [9]

    Palkuti L, Alles M, Hughes H 2014 SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S) Millbrae, CA, USA, October 6–9 2014 p1

    [10]

    Qing D Z, Jian W W, Jin H L, Shuai S, Xu M J, Xiang G, Gen S H, Bing L 2021 At. Energy Sci. Technol. 55 2151

    [11]

    古美良 胡明 2006 压电与声光 28 236

    Gu M L, Hu M 2006 Piezoelectr. Acoustoopt. 28 236

    [12]

    林成鲁 2003 半导体技术 9 39Google Scholar

    Lin C L 2003 Semicond. Technol. 9 39Google Scholar

    [13]

    刘强 2021 博士学位论文 (上海: 中国科学院上海微系统与信息技术研究所)

    Lin Q 2021 Ph. D. Dissertation (Shanghai: Shanghai Institute of Microsystem and Information Technology) (in Chinese)

    [14]

    Liu Q, Zhou H Y, Jia X, Yang Y M, Mu Z Q, Wei X, Yu W J 2022 IEEE Electron Dev. Lett. 43 1814Google Scholar

    [15]

    Zhao L T, Liu Q, Liu C H, Chen L L, Yang Y M, Wei X, Mu Z Q, Yu W J 2021 IEEE Electron Dev. Lett. 42 1428Google Scholar

    [16]

    刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第204—235页

    Liu E K, Zhu B S, Luo J S 2008 Semiconductor Physics (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp204–235 (in Chinese)

    [17]

    Roundy D, Cohen M L 2001 Phys. Rev. B 64 212103

    [18]

    Dubois M M, Rignanese G M, Pardoen T, Charlier J C 2006 Phys. Rev. B 74 235203Google Scholar

    [19]

    Umeno Y, Kushima A, Kitamura T, Gumbsch P, Li J 2005 Phys. Rev. B 72 165431Google Scholar

    [20]

    Moriceau H, Mazen F, Braley C, Rieutord F, Tauzin A, Deguet C 2012 Nucl. Instrum. Methods Phys. Res. 277 84Google Scholar

    [21]

    Daval N, Schwarzenbach W, Moulin C, Bonnin O, Maleville C 2013 VLSI Technology, Systems, and Applications (VLSI-TSA), 2013 International Symposium Hsinchu, Taiwan, China, April 22–24, 2013 p1

    [22]

    Wang B, Gu B, Zhang H, Feng X 2016 Acta Mech. Solida Sin. 29 111Google Scholar

    [23]

    Lagahe-Blanchard C, Sousbie N, Sartori S, Moriceau H, Blondeau B 2003 Proc. Electrochem. Soc. 19 346

    [24]

    Hchbauer T 2001 Ph. D. Dissertation (Germany: University of Marburg)

    [25]

    Radu I 2022 Ph. D. Dissertation (Germany: Martin-Luther-Universität Halle-Wittenberg)

    [26]

    Yun C H, Cheung N W 2000 J. Microelectromech. Syst. 9 474Google Scholar

    [27]

    范钦珊, 殷雅俊, 唐靖林 2014 材料力学 (第3版) (北京: 清华大学出版社) 第126—204页

    Fan Q S, Yin Y J, Tang J L 2014 Material Mechanics (3rd Ed.) (Beijing: Tsinghua University Press) pp126–204 (in Chinese)

    [28]

    Craig Jr R R, Taleff E M 2020 Mechanics of Materials (State of New Jersey: John Wiley & Sons) pp286–293

    [29]

    Franssila S 2005 Introduction to Microfabrication (England: Wiley publication) pp174–182

    [30]

    Schmidt B, Wetzig K 2012 Ion Beams in Materials Processing and Analysis (Vienna: Springer) pp117–235

    [31]

    Nguyen P, Cayrefourcq I, Bourdelle K K, Boussagol A, Guiot E, Mohamed N B, Sousbie N, Akatsu T 2005 J. Appl. Phys. 97 083527

  • [1] Xing Hai-Ying, Zheng Zhi-Jian, Zhang Zi-Han, Wu Wen-Jing, Guo Zhi-Ying. Tunable electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures by strain. Acta Physica Sinica, 2021, 70(6): 067101. doi: 10.7498/aps.70.20201728
    [2] Zhang Jin-Shuai, Huang Qiu-Shi, Jiang Li, Qi Run-Ze, Yang Yang, Wang Feng-Li, Zhang Zhong, Wang Zhan-Shan. Stress and structure properties of X-ray W/Si multilayer under low temperature annealing. Acta Physica Sinica, 2016, 65(8): 086101. doi: 10.7498/aps.65.086101
    [3] Guo Zi-Zheng, Deng Hai-Dong, Huang Jia-Sheng, Xiong Wan-Jie, Xu Chu-Dong. Spin-torque critical current tuned by stress. Acta Physica Sinica, 2014, 63(13): 138501. doi: 10.7498/aps.63.138501
    [4] Li Xi-Lian, Liu Gang, Du Tao-Yuan, Zhao Jing, Wu Mu-Sheng, Ouyang Chu-Ying, Xu Bo. Effect of strain on Li adsorption on silicene. Acta Physica Sinica, 2014, 63(21): 217101. doi: 10.7498/aps.63.217101
    [5] Li Jia, Fang Qi, Luo Bing-Chi, Zhou Min-Jie, Li Kai, Wu Wei-Dong. Residual stress analysis by grazing-incidence X-ray diffraction on beryllium films. Acta Physica Sinica, 2013, 62(14): 140701. doi: 10.7498/aps.62.140701
    [6] Guo Zi-Zheng, Hu Xu-Bo. Effects of stress on the hysteresis loss and coercivity of ferromagnetic film. Acta Physica Sinica, 2013, 62(5): 057501. doi: 10.7498/aps.62.057501
    [7] Wang Cheng, Wang Guan-Yu, Zhang He-Ming, Song Jian-Jun, Yang Chen-Dong, Mao Yi-Fei, Li Yong-Mao, Hu Hui-Yong, Xuan Rong-Xi. Stress models relevant to Raman spectrum in uniaxial/biaxial strained Si. Acta Physica Sinica, 2012, 61(4): 047203. doi: 10.7498/aps.61.047203
    [8] Sun Yun, Wang Sheng-Lai, Gu Qing-Tian, Xu Xin-Guang, Ding Jian-Xu, Liu Wen-Jie, Liu Guang-Xia, Zhu Sheng-Jun. Study of KDP crystal lattice strain and stress by high resolution X-ray diffraction. Acta Physica Sinica, 2012, 61(21): 210203. doi: 10.7498/aps.61.210203
    [9] Yuan Wen-Jia, Zhang Yue-Guang, Shen Wei-Dong, Ma Qun, Liu Xu. Characteristics of Nb2O5 thin films deposited by ion beam sputtering. Acta Physica Sinica, 2011, 60(4): 047803. doi: 10.7498/aps.60.047803
    [10] Liu Hong-Jie, Huang Jin, Wang Feng-Rui, Zhou Xin-Da, Jiang Xiao-Dong, Wu Wei-Dong. Effect of thermal stresses on fused silica surface on the laser induced damage. Acta Physica Sinica, 2010, 59(2): 1308-1313. doi: 10.7498/aps.59.1308
    [11] Gu Wen-Ping, Hao Yue, Zhang Jin-Cheng, Wang Chong, Feng Qian, Ma Xiao-Hua. Degradation under high-field stress and gate stress of AlGaN/GaN HEMTs. Acta Physica Sinica, 2009, 58(1): 511-517. doi: 10.7498/aps.58.511
    [12] Xiong Chuan-Bing, Jiang Feng-Yi, Fang Wen-Qing, Wang Li, Mo Chun-Lan. Change in stress of GaN light-emitting diode films during the process of transferring the film from the Si(111) growth substrate to new substrate. Acta Physica Sinica, 2008, 57(5): 3176-3181. doi: 10.7498/aps.57.3176
    [13] Li Rong-Bin. Study of the stress in doped CVD diamond films. Acta Physica Sinica, 2007, 56(6): 3428-3434. doi: 10.7498/aps.56.3428
    [14] Zhu Zhen-Ye, Wang Biao, Zheng Yue, Wang Hai, Li Qing-Kun, Li Chen-Liang. First-principles study of structural instability and polarization in BaTiO3/SrTiO3 superlattice. Acta Physica Sinica, 2007, 56(10): 5986-5989. doi: 10.7498/aps.56.5986
    [15] Jin Hui-Ming, Felix Adriana, Aroyave Majorri. Influence of yttrium ion-implantation on oxidation behavior of nickel and property of oxide scale at 900℃. Acta Physica Sinica, 2006, 55(11): 6157-6162. doi: 10.7498/aps.55.6157
    [16] Tao Yong-Mei, Jiang Qing, Cao Hai-Xia. Impact of stress on the thermodynamic properties of ferroelectric films within the transverse Ising model. Acta Physica Sinica, 2005, 54(1): 274-279. doi: 10.7498/aps.54.274
    [17] Sun Xian-Kai, Lin Bi-Xia, Zhu Jun-Jie, Zhang Yang, Fu Zhu-Xi. Studies on the strain and its effect on defects in heteroepitaxial ZnO films prepared by LP-OCVD method. Acta Physica Sinica, 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [18] Guan Qing-Feng, An Chun-Xiang, Qin Ying, Zou Jian-Xin, Hao Sheng-Zhi, Zhang Qing-Yu, Dong Chuang, Zou Guang-Tian. Microstructure induced by stress generated by high-current pulsed electron beam. Acta Physica Sinica, 2005, 54(8): 3927-3934. doi: 10.7498/aps.54.3927
    [19] Xu Bo, Yu Qing-Xuan, Wu Qi-Hong, Liao Yuan, Wang Guan-Zhong, Fang Rong-Chuan. Effects of strain and Mg-dopant on the photoluminescencespectra in p-type GaN. Acta Physica Sinica, 2004, 53(1): 204-209. doi: 10.7498/aps.53.204
    [20] Fang Zhi-Jun, Xia Yi-Ben, Wang Lin-Jun, Zhang Wei-Li, Ma Zhe-Guo, Zhang Ming-Long. Study of the stress observed in diamond films on carbon-implanted alumina surfaces. Acta Physica Sinica, 2003, 52(4): 1028-1033. doi: 10.7498/aps.52.1028
Metrics
  • Abstract views:  3818
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  14 February 2023
  • Accepted Date:  01 April 2023
  • Available Online:  18 April 2023
  • Published Online:  20 June 2023

/

返回文章
返回
Baidu
map