-
通过第一性原理计算探讨了蓝磷烯与过渡金属硫化物MoTe2/WTe2形成范德瓦耳斯异质结的电子结构和光学性质, 以及施加双轴应力对相关性质的影响. 计算结果表明, 形成BlueP/X Te2 (X = Mo, W)异质结, 二者能带排列为间接带隙type-II并有较强的红外光吸收, 同时屏蔽特性增强. 随压缩应力增加, BlueP/X Te2转变为直接带隙type-II能带排列最后转变为金属性; 随拉伸应力增加, 异质结转变为间接带隙type-I能带排列. 外加应力也能有效调控异质结的光吸收性质, 随压缩应力增加吸收边红移, 光吸收响应拓展至中红外光谱区且吸收系数增大; BlueP/MoTe2较BlueP/WTe2在中红外至红外光区间表现出更强的光吸收响应; 静态介电常数ε1(0)大幅增加. 结果表明, 压缩应力对BlueP/MoTe2和BlueP/WTe2能带排列、光吸收特性均有显著的调控作用, 其中BlueP/MoTe2对调控更敏感, 这些特性也使BlueP/X Te2异质结在窄禁带中红外半导体材料及光电器件具有令人期待的应用价值.
-
关键词:
- BlueP/X Te2 (X = Mo, W)异质结 /
- 电子结构 /
- 光学性质 /
- 应力
First principles calculations are performed to explore the electronic structure and optical properties of BlueP/X Te2 (X = Mo, W) van der Waals heterostructures after biaxial strain has been applied. The type-II band alignments with indirect band gap are obtained in the most stable BlueP/X Te2 heterostructures, in which the photon-generated carriers can be effectively separated spatially. The BlueP/MoTe2 and BlueP/WTe2 heterostructures both have appreciable absorption of infrared light, while the shielding property is enhanced. The increase of biaxial compressive strain induces indirect-direct band gap transition and semiconductor-metal transition when a certain compressive strain is imposed on the heterostructures, moreover, the band gap of the heterostructures shows approximately linear decrease with the compressive strain increasing, and they undergo a transition from indirect band gap type-II to indirect band gap type-I with the increase of biaxial tensile strain. These characteristics provide an attractive possibility of obtaining novel multifunctional devices. We also find that the optical properties of BlueP/X Te2 heterostructures can be effectively modulated by biaxial strain. With the increase of compression strain, the absorption edge is red-shifted, the response of light absorption extends to the mid-infrared light and the absorption coefficient increases to 10–5 cm–1 for the two heterostructures. The BlueP/MoTe2 shows stronger light absorption response than the BlueP/WTe2 in the mid-infrared to infrared region and the ε1(0) increases significantly. The BlueP/X Te2 heterostructures exhibit modulation of their band alignment and optical properties by applied biaxial strain. The calculation results not only pave the way for experimental research but also indicate the great potential applications of BlueP/XTe2 van der Waals heterostructures in narrow band gap mid-infrared semiconductor materials and photoelectric devices.-
Keywords:
- BlueP/X Te2 (X = Mo, W) van der Waals heterostructures /
- electronic structure /
- optical properties /
- strain
[1] Gupta A, Sakthivel T, Seal S 2015 Prog. Mater. Sci. 73 44Google Scholar
[2] Shi J, Tong R, Zhou X, Gong Y, Zhang Z, Ji Q, Zhang Y, Fang Q, Gu L, Wang X 2016 Adv. Mater. 28 10664Google Scholar
[3] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958Google Scholar
[4] Chen S Y, Goldstein T, Venkataraman D, Ramasubramaniam A, Yan J 2016 Nano. Lett. 16 5852Google Scholar
[5] Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111
[6] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D, Liu K, Ji J, Li J 2014 Nano. Lett. 14 3185Google Scholar
[7] Yu Y F, Hu S, Su L Q, Huang L J, Liu Y, Jin Z H, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L Y 2015 Nano Lett. 15 486Google Scholar
[8] Nguyen C V 2018 Superlattices Microst. 116 79Google Scholar
[9] Yu L, Lee Y H, Ling X, Santos E J G, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H 2014 Nano. Lett. 14 3055Google Scholar
[10] Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S, Machida T 2015 Appl. Phys. Lett. 107 023109
[11] Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587
[12] Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396Google Scholar
[13] Zandt T, Dwelk H, Janowitz C, Manzke R 2007 J. Alloys Compd. 442 216Google Scholar
[14] Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar
[15] Seok J, Lee J H, Cho S, Ji B, Kim H W, Kwon M, Kim D, Kim Y M, Oh S H, Kim S W 2017 2D Mater. 4 025061
[16] Qiao H, Huang Z Y, Liu S Y, Liu Y D, Li J 2018 Ceram. Int. 44 21205Google Scholar
[17] Muechler L, Alexandradinata A, Neupert T, Car R 2016 Phys. Rev. X 6 041069
[18] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar
[19] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar
[20] Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C, Yuan K 2016 Nano Lett. 16 4903Google Scholar
[21] Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar
[22] Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y 2015 Sci. Rep. 5 09961Google Scholar
[23] Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P 2016 ACS Nano. 10 3852Google Scholar
[24] Wu E, Xie Y, Liu Q, Hu X, Liu J, Zhang D, Zhou C 2019 ACS Nano. 13 5430Google Scholar
[25] Le H, Li J 2016 Appl. Phys. Lett. 108 083101Google Scholar
[26] Li H, Li D, Luo H 2020 Phys. Status Solidi 257 2000006Google Scholar
[27] Li H, Cui Y, Li W, Ye L, Mu L 2020 Appl. Phys. A 126 92Google Scholar
[28] You B, Wang X, Zheng Z, Mi W 2016 Phys. Chem. Chem. Phys. 18 7381Google Scholar
[29] Sun M, Chou J P, Yu J, Tang W 2017 Phys. Chem. Chem. Phys. 19 17324Google Scholar
[30] Zhu J, Zhang J, Hao Y 2016 Jpn. J Appl. Phys. 55 080306Google Scholar
[31] Bernardi M, Palummo M, Grossman J C 2013 Nano. Lett. 13 3664Google Scholar
[32] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar
[33] Mak K F, Shan J 2016 Nature Photon. 10 216Google Scholar
[34] Liu G, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 46 2643Google Scholar
[35] Duan X, Wang C, Pan A, Yu R, Duan X 2016 CHemInform 47 8859Google Scholar
[36] Kumar A, Ahluwalia P K 2012 Eur. Phys. J. B 85 186Google Scholar
[37] Terrones H, López-Urías F, Terrones M 2013 Sci. Rep. 3 1549Google Scholar
[38] 郭丽娟, 胡吉松, 马新国, 项炬 2019 68 097101Google Scholar
Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar
[39] 马浩浩, 张显斌, 魏旭艳, 曹佳萌 2020 69 117101Google Scholar
Ma H H, Zhang X B, Wei X Y, Cao J M 2020 Acta Phys. Sin. v. 69 117101Google Scholar
[40] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater 2 17033
[41] Liu B, Liao Q, Zhang X, Du J, Zhang Y 2019 ACS Nano. 13 9057Google Scholar
[42] Kresse G, Furthmüller J 1996 Comp. mat. er 6 15Google Scholar
[43] Perdew J P, Burke K, Ernzerhof M, Erratum 1996 Phys. Rev. Lett. 77 3865Google Scholar
[44] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[45] Klime Jí, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201Google Scholar
[46] Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar
[47] Yang J, Lü T, Myint Y W, Pei J, Lu Y 2015 ACS Nano 9 6603Google Scholar
[48] Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar
[49] Pham K D, Phuc H V, Hieu N N, Hoi B D, Nguyen C V 2018 AIP Adv. 29 075207Google Scholar
[50] Chen D, Lei X, Wang Y, Zhong S, Liu G, Xu B, Ouyang C 2019 Appl. Surf. Sci. 497 143809Google Scholar
[51] Zhang W, Zhang L 2017 Rsc Advances 7 34584Google Scholar
[52] Sun M, Chou J P, Yu J, Tang W 2018 Phys. Chem. Chem. Phys. 20 24726Google Scholar
[53] Zhang W X, He W H, Zhao J W, He C 2018 J. Solid. State. Chem. 265 257Google Scholar
[54] Zhang Z H, Xie Z F, Liu J 2020 Phys. Chem. Chem. Phys. 22 5873Google Scholar
[55] 何文浩 2019 硕士学位论文 (西安: 长安大学)
He W H 2019 M. S. Dissertation (Xi’an: Chang’an University) (in Chinese)
[56] 沈学础 2002 半导体光谱和光学性质 (北京科学出版社) 第76页
Shen X C 2002 Spectra and Optical Properties of Semiconductors (Beijing Science Press) p76 (in Chinese)
[57] Penn D R 1962 Phys. Rev. 128 2093Google Scholar
-
图 7 施加不同应力下(a) BlueP/MoTe2和(b) BlueP/WTe2异质结分态密度图; (c) BlueP/X Te2带隙与应力变化关系图; ε > 0 (ε < 0)表示体系施加拉伸(压缩)应力
Fig. 7. Partial density of states under different biaxial strains for (a) BlueP/MoTe2 and (b) BlueP/WTe2; (c) the band gap as a function of biaxial strains in BlueP/X Te2 van der Waals heterostructures; ε > 0 (ε < 0) represents the tensile strain (compressive strain).
图 8 单层BlueP与X Te2及施加不同应力下BlueP/X Te2异质结介电函数实部ε1(ω)谱图 (a)单层BlueP与X Te2; (b) BlueP/X Te2异质结; (c), (e) BlueP/MoTe2, BlueP/WTe2, ε < 0; (d), (f) BlueP/MoTe2, BlueP/WTe2, ε > 0; ε > 0 (ε < 0)表示体系施加拉伸(压缩)应力
Fig. 8. Real part of the dielectric function of BlueP and X Te2 monolayer, and BlueP/X Te2 heterostructures under different biaxial strains: (a) BlueP and X Te2 monolayer; (b) BlueP/X Te2; (c), (e) BlueP/MoTe2, BlueP/WTe2, ε < 0; (d), (f) BlueP/MoTe2, BlueP/WTe2, ε > 0; ε > 0 (ε < 0) represents the tensile strain (compressive strain).
图 9 单层BlueP与X Te2及施加不同应力下BlueP/X Te2异质结光吸收谱 (a)单层BlueP, MoTe2与BlueP/MoTe2; (b)单层BlueP, WTe2与BlueP/WTe2; (c), (d) BlueP/MoTe2, BlueP/WTe2, 施加应力区间为–4%–+4%
Fig. 9. Absorption coefficient of BlueP and X Te2 monolayer, and BlueP/XTe2 heterostructures under different biaxial strains: (a) BlueP, MoTe2 monolayer and BlueP/MoTe2; (b) BlueP, WTe2 monolayer and BlueP/WTe2; (c) and (d) for BlueP/MoTe2 and BlueP/WTe2 within the biaxial strains –4%–+4%, respectively.
表 1 单层BlueP, MoTe2和WTe2及异质结BlueP/X Te2的晶格常数、带隙、晶格失配度, 以及异质结BlueP/X Te2的层间距
Table 1. Lattice constants a, band gaps Eg, lattice mismatch σ of BlueP, MoTe2 and WTe2 monolayers and BlueP/X Te2 heterostructures, and interlayer distance d0 of BlueP/X Te2 heterostructures.
a/Å Eg/eV σ/% d0/Å BlueP 3.28 1.94 (间) — — MoTe2 3.55 1.11 (直) — — WTe2 3.55 1.08 (直) — — BlueP/MoTe2 3.39 0.6 (间) 3.6 3.3 BlueP/WTe2 3.43 0.713 (间) 3.9 3.4 -
[1] Gupta A, Sakthivel T, Seal S 2015 Prog. Mater. Sci. 73 44Google Scholar
[2] Shi J, Tong R, Zhou X, Gong Y, Zhang Z, Ji Q, Zhang Y, Fang Q, Gu L, Wang X 2016 Adv. Mater. 28 10664Google Scholar
[3] Li B, Xing T, Zhong M, Huang L, Lei N, Zhang J, Li J, Wei Z 2017 Nat. Commun. 8 1958Google Scholar
[4] Chen S Y, Goldstein T, Venkataraman D, Ramasubramaniam A, Yan J 2016 Nano. Lett. 16 5852Google Scholar
[5] Kang J, Tongay S, Zhou J, Li J, Wu J 2013 Appl. Phys. Lett. 102 012111
[6] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D, Liu K, Ji J, Li J 2014 Nano. Lett. 14 3185Google Scholar
[7] Yu Y F, Hu S, Su L Q, Huang L J, Liu Y, Jin Z H, Purezky A A, Geohegan D B, Kim K W, Zhang Y, Cao L Y 2015 Nano Lett. 15 486Google Scholar
[8] Nguyen C V 2018 Superlattices Microst. 116 79Google Scholar
[9] Yu L, Lee Y H, Ling X, Santos E J G, Shin Y C, Lin Y, Dubey M, Kaxiras E, Kong J, Wang H 2014 Nano. Lett. 14 3055Google Scholar
[10] Sata Y, Moriya R, Morikawa S, Yabuki N, Masubuchi S, Machida T 2015 Appl. Phys. Lett. 107 023109
[11] Ji Q, Zhang Y, Zhang Y, Liu Z 2015 Chem. Soc. Rev. 44 2587
[12] Roy A, Movva H C P, Satpati B, Kim K, Dey R, Rai A, Pramanik T, Guchhait S, Tutuc E, Banerjee S K 2016 ACS Appl. Mater. Interfaces 8 7396Google Scholar
[13] Zandt T, Dwelk H, Janowitz C, Manzke R 2007 J. Alloys Compd. 442 216Google Scholar
[14] Qian X F, Liu J W, Fu L, Li J 2014 Science 346 1344Google Scholar
[15] Seok J, Lee J H, Cho S, Ji B, Kim H W, Kwon M, Kim D, Kim Y M, Oh S H, Kim S W 2017 2D Mater. 4 025061
[16] Qiao H, Huang Z Y, Liu S Y, Liu Y D, Li J 2018 Ceram. Int. 44 21205Google Scholar
[17] Muechler L, Alexandradinata A, Neupert T, Car R 2016 Phys. Rev. X 6 041069
[18] Qiao J, Kong X, Hu Z X, Yang F, Ji W 2014 Nat. Commun. 5 4475Google Scholar
[19] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H, Zhang Y 2014 Nat. Nanotechnol. 9 372Google Scholar
[20] Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C, Yuan K 2016 Nano Lett. 16 4903Google Scholar
[21] Zhu Z, Tomanek D 2014 Phys. Rev. Lett. 112 176802Google Scholar
[22] Xiao J, Long M, Zhang X, Ouyang J, Xu H, Gao Y 2015 Sci. Rep. 5 09961Google Scholar
[23] Zhang K, Zhang T, Cheng G, Li T, Wang S, Wei W, Zhou X, Yu W, Sun Y, Wang P 2016 ACS Nano. 10 3852Google Scholar
[24] Wu E, Xie Y, Liu Q, Hu X, Liu J, Zhang D, Zhou C 2019 ACS Nano. 13 5430Google Scholar
[25] Le H, Li J 2016 Appl. Phys. Lett. 108 083101Google Scholar
[26] Li H, Li D, Luo H 2020 Phys. Status Solidi 257 2000006Google Scholar
[27] Li H, Cui Y, Li W, Ye L, Mu L 2020 Appl. Phys. A 126 92Google Scholar
[28] You B, Wang X, Zheng Z, Mi W 2016 Phys. Chem. Chem. Phys. 18 7381Google Scholar
[29] Sun M, Chou J P, Yu J, Tang W 2017 Phys. Chem. Chem. Phys. 19 17324Google Scholar
[30] Zhu J, Zhang J, Hao Y 2016 Jpn. J Appl. Phys. 55 080306Google Scholar
[31] Bernardi M, Palummo M, Grossman J C 2013 Nano. Lett. 13 3664Google Scholar
[32] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8 497Google Scholar
[33] Mak K F, Shan J 2016 Nature Photon. 10 216Google Scholar
[34] Liu G, Xiao D, Yao Y, Xu X, Yao W 2015 Chem. Soc. Rev. 46 2643Google Scholar
[35] Duan X, Wang C, Pan A, Yu R, Duan X 2016 CHemInform 47 8859Google Scholar
[36] Kumar A, Ahluwalia P K 2012 Eur. Phys. J. B 85 186Google Scholar
[37] Terrones H, López-Urías F, Terrones M 2013 Sci. Rep. 3 1549Google Scholar
[38] 郭丽娟, 胡吉松, 马新国, 项炬 2019 68 097101Google Scholar
Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar
[39] 马浩浩, 张显斌, 魏旭艳, 曹佳萌 2020 69 117101Google Scholar
Ma H H, Zhang X B, Wei X Y, Cao J M 2020 Acta Phys. Sin. v. 69 117101Google Scholar
[40] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater 2 17033
[41] Liu B, Liao Q, Zhang X, Du J, Zhang Y 2019 ACS Nano. 13 9057Google Scholar
[42] Kresse G, Furthmüller J 1996 Comp. mat. er 6 15Google Scholar
[43] Perdew J P, Burke K, Ernzerhof M, Erratum 1996 Phys. Rev. Lett. 77 3865Google Scholar
[44] Kresse G, Joubert D 1999 Phys. Rev. B 59 1758
[45] Klime Jí, Bowler D R, Michaelides A 2010 J. Phys. Condens. Matter 22 022201Google Scholar
[46] Ghosh B, Nahas S, Bhowmick S, Agarwal A 2015 Phys. Rev. B 91 115433Google Scholar
[47] Yang J, Lü T, Myint Y W, Pei J, Lu Y 2015 ACS Nano 9 6603Google Scholar
[48] Ding Y, Wang Y, Ni J, Shi L, Shi S, Tang W 2011 Physica B 406 2254Google Scholar
[49] Pham K D, Phuc H V, Hieu N N, Hoi B D, Nguyen C V 2018 AIP Adv. 29 075207Google Scholar
[50] Chen D, Lei X, Wang Y, Zhong S, Liu G, Xu B, Ouyang C 2019 Appl. Surf. Sci. 497 143809Google Scholar
[51] Zhang W, Zhang L 2017 Rsc Advances 7 34584Google Scholar
[52] Sun M, Chou J P, Yu J, Tang W 2018 Phys. Chem. Chem. Phys. 20 24726Google Scholar
[53] Zhang W X, He W H, Zhao J W, He C 2018 J. Solid. State. Chem. 265 257Google Scholar
[54] Zhang Z H, Xie Z F, Liu J 2020 Phys. Chem. Chem. Phys. 22 5873Google Scholar
[55] 何文浩 2019 硕士学位论文 (西安: 长安大学)
He W H 2019 M. S. Dissertation (Xi’an: Chang’an University) (in Chinese)
[56] 沈学础 2002 半导体光谱和光学性质 (北京科学出版社) 第76页
Shen X C 2002 Spectra and Optical Properties of Semiconductors (Beijing Science Press) p76 (in Chinese)
[57] Penn D R 1962 Phys. Rev. 128 2093Google Scholar
计量
- 文章访问数: 7597
- PDF下载量: 190
- 被引次数: 0