-
A novel low frequency acoustic sensor based on the cladding mode of large-angle tilted fiber Bragg grating (TFBG) is proposed and verified in this work. It mainly uses the characteristic that the coupling mode of the core and cladding mode in TFBG is easy to change when the TFBG experiences micro-bend, which will finally causes a dramatic drift in the spectrum. By combining a large-angle TFBG with the designed polyethylene terephthalate (PET) transducer diaphragm and cavity structure, an effective low-frequency acoustic sensing system is obtained in this work. Under the action of applied acoustic wave, the transducer membrane will have periodic vibrations, which will makes the fixed TFBG dynamically bend, directly leading to a wavelength shift of the cladding mode spectrum. The experimental results show that the sensing system can achieve high-sensitivity acoustic detection in a frequency range of 45–220 Hz, and a maximum acoustic pressure sensitivity of 115.88 mV/Pa at 54 Hz. Moreover, the minimum detection sound pressure can achieve 539.2 μPa/Hz1/2@54 Hz. Therefore, the sensor has the advantages of high sensitivity, good repeatability, simple structure, easy processing, etc. It has a great development prospect in the low-frequency acoustic detection related application fields.
-
Keywords:
- fiber optic acoustic sensing /
- tilted fiber Bragg grating /
- mode coupling /
- dynamic bending
[1] Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoust. 117 207
Google Scholar
[2] Duan S C, Wang W D, Zhang S, Yang X, Zhang Y, Zhang G J 2021 IEEE Access 9 27122
Google Scholar
[3] Grangeon J, Lesage P 2019 J. Volcanol. Geotherm. Res. 387 106668
Google Scholar
[4] Zhu W H, Li D Y, Liu J J, Wang R H 2020 App. Opt. 59 1775
Google Scholar
[5] Jia J S, Jiang Y, Zhang L C, Gao H C, Jiang L 2019 IEEE Sens. J. 19 7988
Google Scholar
[6] Jiang J, Wang K, Wu X R, Ma G M, Zhang C H 2020 Plasma Sci. Technol. 22 024002
Google Scholar
[7] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 71 094301
Google Scholar
Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301
Google Scholar
[8] Wang S, Lu P, Liu L, Liao H, et al. 2016 IEEE Photonics Technol. Lett. 28 1264
Google Scholar
[9] Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974
Google Scholar
[10] Chaganti L, Ahmad M H, Piah M A M, Noor M Y M, Azmi A I 2020 IEEE Access 8 188044
Google Scholar
[11] Dass S, Jha R 2017 J. Lightwave Technol. 35 5411
Google Scholar
[12] Luo C, Lu P, Fu X, Chen J, Wang S, Zhang C, Liu D M, Zhang J S 2016 Photonic Netw. Commun. 32 224
Google Scholar
[13] Fu X, Lu P, Ni W J, Liu L, Liao H, Liu D M, Zhang J S 2016 IEEE Photonics J. 8 6805713
Google Scholar
[14] Lu P, Liu D M, Liao H 2016 Conference on Advanced Sensor Systems and Applications VII Beijing, China, October 12–14, 2016 p202
[15] Guo T A, Liu F, Guan B O, Albert J 2016 Opt. Laser Technol. 78 19
Google Scholar
[16] Hayber S E, Aydemir U, Tabaru T E, Saracoglu O G 2019 IEEE Sens. J. 19 5680
Google Scholar
[17] Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481
Google Scholar
[18] Kipriksiz S E, Yucel M 2021 Opt. Quantum Electron. 53 6
Google Scholar
[19] Yang S T, Wang H Y, Yuan T T, Zhang X T, Yuan L B 2022 J. Lightwave Technol. 40 6030
Google Scholar
[20] Zhu F X, Zhang Y D, Qu Y C, Jiang W G, Su H Y, Guo Y, Qi K Y 2020 Opt. Fiber Technol. 54 102133
Google Scholar
[21] Monteiro C S, Ferreira M S, Silva S O, Kobelke J, Schuster K, Bierlich J, Frazao O 2016 Photonic Sens. 6 339
Google Scholar
[22] Wei Y, Liu C B, Liu C L, et al. 2022 IEEE Sens. J. 22 21719
Google Scholar
[23] Zhan P, Huang Y L 2020 International Conference on Optoelectronic and Microelectronic Technology and Application Nanjing, China, October 20–22, 2020 p827
[24] Wu S N, Wang L, Chen X L, Zhou B 2018 J. Lightwave Technol. 36 2216
Google Scholar
[25] Huang Q Q, Deng S, Li M, et al. 2020 Opt. Eng. 59 064105
[26] Yao Q K, Guo X, Xie L F, et al. 2021 Materials 14 7605
Google Scholar
-
表 1 光纤弯曲性能比较
Table 1. Comparison of fiber bending property.
表 2 光纤声传感方案的性能比较
Table 2. Performance comparison of fiber optical acoustic sensing system.
-
[1] Mydlarz C, Salamon J, Bello J P 2017 Appl. Acoust. 117 207
Google Scholar
[2] Duan S C, Wang W D, Zhang S, Yang X, Zhang Y, Zhang G J 2021 IEEE Access 9 27122
Google Scholar
[3] Grangeon J, Lesage P 2019 J. Volcanol. Geotherm. Res. 387 106668
Google Scholar
[4] Zhu W H, Li D Y, Liu J J, Wang R H 2020 App. Opt. 59 1775
Google Scholar
[5] Jia J S, Jiang Y, Zhang L C, Gao H C, Jiang L 2019 IEEE Sens. J. 19 7988
Google Scholar
[6] Jiang J, Wang K, Wu X R, Ma G M, Zhang C H 2020 Plasma Sci. Technol. 22 024002
Google Scholar
[7] 刘欣, 蔡宸, 董志飞, 邓欣, 胡昕宇, 祁志美 2022 71 094301
Google Scholar
Liu X, Cai C, Dong Z F, Deng X, Hu X Y, Qi Z M 2022 Acta Phys. Sin. 71 094301
Google Scholar
[8] Wang S, Lu P, Liu L, Liao H, et al. 2016 IEEE Photonics Technol. Lett. 28 1264
Google Scholar
[9] Dass S, Chatterjee K, Kachhap S, Jha R 2021 J. Lightwave Technol. 39 3974
Google Scholar
[10] Chaganti L, Ahmad M H, Piah M A M, Noor M Y M, Azmi A I 2020 IEEE Access 8 188044
Google Scholar
[11] Dass S, Jha R 2017 J. Lightwave Technol. 35 5411
Google Scholar
[12] Luo C, Lu P, Fu X, Chen J, Wang S, Zhang C, Liu D M, Zhang J S 2016 Photonic Netw. Commun. 32 224
Google Scholar
[13] Fu X, Lu P, Ni W J, Liu L, Liao H, Liu D M, Zhang J S 2016 IEEE Photonics J. 8 6805713
Google Scholar
[14] Lu P, Liu D M, Liao H 2016 Conference on Advanced Sensor Systems and Applications VII Beijing, China, October 12–14, 2016 p202
[15] Guo T A, Liu F, Guan B O, Albert J 2016 Opt. Laser Technol. 78 19
Google Scholar
[16] Hayber S E, Aydemir U, Tabaru T E, Saracoglu O G 2019 IEEE Sens. J. 19 5680
Google Scholar
[17] Guo M, Chen K, Zhang G Y, Li C X, Zhao X Y, Gong Z F, Yu Q X 2022 J. Lightwave Technol. 40 4481
Google Scholar
[18] Kipriksiz S E, Yucel M 2021 Opt. Quantum Electron. 53 6
Google Scholar
[19] Yang S T, Wang H Y, Yuan T T, Zhang X T, Yuan L B 2022 J. Lightwave Technol. 40 6030
Google Scholar
[20] Zhu F X, Zhang Y D, Qu Y C, Jiang W G, Su H Y, Guo Y, Qi K Y 2020 Opt. Fiber Technol. 54 102133
Google Scholar
[21] Monteiro C S, Ferreira M S, Silva S O, Kobelke J, Schuster K, Bierlich J, Frazao O 2016 Photonic Sens. 6 339
Google Scholar
[22] Wei Y, Liu C B, Liu C L, et al. 2022 IEEE Sens. J. 22 21719
Google Scholar
[23] Zhan P, Huang Y L 2020 International Conference on Optoelectronic and Microelectronic Technology and Application Nanjing, China, October 20–22, 2020 p827
[24] Wu S N, Wang L, Chen X L, Zhou B 2018 J. Lightwave Technol. 36 2216
Google Scholar
[25] Huang Q Q, Deng S, Li M, et al. 2020 Opt. Eng. 59 064105
[26] Yao Q K, Guo X, Xie L F, et al. 2021 Materials 14 7605
Google Scholar
Catalog
Metrics
- Abstract views: 4567
- PDF Downloads: 88
- Cited By: 0