-
Based on the finite temperature plasma dielectric tensor model which contains the particle thermal effect, by numerically solving the eigenmode dispersion relation of electromagnetic waves propagating in radially uniform and magnetized warm plasma column which is surrounded by conducting boundary, the mode coupling characteristic and liner damping mechanism induced wave power deposition properties of helicon and Trivelpiece-Gould (TG) waves are parametrically analyzed. The detailed investigations show as follows. Under typical helicon plasma parameter conditions, i.e. wave frequency ω/(2π) = 13.56 MHz, ion temperature is much smaller than electron temperature, for the helicon wave, there exist a cut-off magnetic field B0,H,cutoff and a cut-off plasma density n0,H,cutoff, for which under the conditions of B0 > B0,H,cutoff or n0 < n0,H,cutoff, the helicon wave becomes an evanescent wave. When the magnetic field intensity changes from 48.4 to 484 G, i.e., ω/ωce ranges from 0.01 to 0.1, for the power deposition intensity, Landau damping of TG wave dominates for the m = 0 mode, meanwhile, for the m = 1 mode, which wave, i.e. helicon wave or TG wave, plays a major role in power deposition mainly depends on the magnitude of the magnetic field. On the other hand, for a given magnetic field B0 = 100 G, when ωpe/ωce changes from 3 to 100, for both the m = 0 mode and the m = 1 mode, the power deposition induced by Landau damping of TG wave plays a major role, further, one may notice that the power deposition of TG wave decreases while the power deposition of the helicon wave increases as plasma density increases. Finally, for both the m = 0 mode and the m = 1 mode, the power deposition due to the Landau damping plays a dominant role. All these conclusions provide us with some useful clues to better understanding the high ionization mechanism of helicon wave discharges.
-
Keywords:
- helicon plasma /
- mode coupling /
- power deposition /
- dispersion relation
[1] Chen F F 2015 Plasma Sources Sci. Technol. 24 014001Google Scholar
[2] Isayama S, Shinohara S, Hada T 2018 Plasma Fusion Res. 13 1101014Google Scholar
[3] Shinohara S 2018 Adv. Phys.: X 3 1420424Google Scholar
[4] Aigrain P 1960 Proceedings of the International Conference on Semiconductor Physics Prague, Czech Republic, August 4–8, 1960 p224
[5] Chen F F 1991 Plasma Phys. Controlled Fusion 33 339Google Scholar
[6] Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar
[7] Shamrai K P, Taranov V B 1994 Plasma Phys. Controlled Fusion 36 1719Google Scholar
[8] Shamrai K P 1998 Plasma Sources Sci. Technol. 7 499Google Scholar
[9] Chen F F, Blackwell D D 1999 Phys. Rev. Lett. 82 2677Google Scholar
[10] Blackwell D D, Chen F F 2001 Plasma Sources Sci. Technol. 10 226Google Scholar
[11] Kline J, Scime E 2003 Phys. Plasmas 10 135Google Scholar
[12] Kim S, Hwang Y 2008 Plasma Phys. Controlled Fusion 50 035007Google Scholar
[13] Isayama S, Hada T, Shinohara S, et al. 2016 Phys. Plasmas 23 063513Google Scholar
[14] 成玉国, 程谋森, 王墨戈等 2014 63 035203Google Scholar
Cheng Y G, Cheng M S, Wang M G, et al. 2014 Acta Phys. Sin. 63 035203Google Scholar
[15] 平兰兰, 张新军, 杨桦等 2019 68 205201Google Scholar
Ping L L, Zhang X J, Yang H, et al. 2019 Acta Phys.Sin. 68 205201Google Scholar
[16] Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar
[17] Arnush D, Chen F F 1998 Phys. Plasmas 5 1239Google Scholar
[18] Arnush D 2000 Phys. Plasmas 7 3042Google Scholar
[19] Sakawa Y, Kunimatsu H, Kikuchi H, et al. 2003 Phys. Rev. Lett. 90 105001Google Scholar
[20] Vey B 1984 PFC/RR-84-12 (Cambridge: Massachusetts Institute of Technology) pp30–31
[21] Niemi K, Krämer M 2008 Phys. Plasmas 15 073503Google Scholar
[22] Shamrai K P, Shinohara S 2001 Phys. Plasmas 8 4659Google Scholar
[23] Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34
[24] Fried B D, Conte S D 2015 The Plasma Dispersion Function: the Hilbert Transform of the Gaussian (New York: Academic Press) pp1–3
[25] Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar
[26] Shoji T, Sakawa Y, Nakazawa S, et al. 1993 Plasma Sources Sci. Technol. 2 5Google Scholar
[27] Swanson D G 1989 Plasma Waves (New York: Academic Press) pp375–376
[28] Lafleur T, Charles C, Boswell R 2010 Phys. Plasmas 17 073508Google Scholar
-
-
[1] Chen F F 2015 Plasma Sources Sci. Technol. 24 014001Google Scholar
[2] Isayama S, Shinohara S, Hada T 2018 Plasma Fusion Res. 13 1101014Google Scholar
[3] Shinohara S 2018 Adv. Phys.: X 3 1420424Google Scholar
[4] Aigrain P 1960 Proceedings of the International Conference on Semiconductor Physics Prague, Czech Republic, August 4–8, 1960 p224
[5] Chen F F 1991 Plasma Phys. Controlled Fusion 33 339Google Scholar
[6] Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar
[7] Shamrai K P, Taranov V B 1994 Plasma Phys. Controlled Fusion 36 1719Google Scholar
[8] Shamrai K P 1998 Plasma Sources Sci. Technol. 7 499Google Scholar
[9] Chen F F, Blackwell D D 1999 Phys. Rev. Lett. 82 2677Google Scholar
[10] Blackwell D D, Chen F F 2001 Plasma Sources Sci. Technol. 10 226Google Scholar
[11] Kline J, Scime E 2003 Phys. Plasmas 10 135Google Scholar
[12] Kim S, Hwang Y 2008 Plasma Phys. Controlled Fusion 50 035007Google Scholar
[13] Isayama S, Hada T, Shinohara S, et al. 2016 Phys. Plasmas 23 063513Google Scholar
[14] 成玉国, 程谋森, 王墨戈等 2014 63 035203Google Scholar
Cheng Y G, Cheng M S, Wang M G, et al. 2014 Acta Phys. Sin. 63 035203Google Scholar
[15] 平兰兰, 张新军, 杨桦等 2019 68 205201Google Scholar
Ping L L, Zhang X J, Yang H, et al. 2019 Acta Phys.Sin. 68 205201Google Scholar
[16] Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar
[17] Arnush D, Chen F F 1998 Phys. Plasmas 5 1239Google Scholar
[18] Arnush D 2000 Phys. Plasmas 7 3042Google Scholar
[19] Sakawa Y, Kunimatsu H, Kikuchi H, et al. 2003 Phys. Rev. Lett. 90 105001Google Scholar
[20] Vey B 1984 PFC/RR-84-12 (Cambridge: Massachusetts Institute of Technology) pp30–31
[21] Niemi K, Krämer M 2008 Phys. Plasmas 15 073503Google Scholar
[22] Shamrai K P, Shinohara S 2001 Phys. Plasmas 8 4659Google Scholar
[23] Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34
[24] Fried B D, Conte S D 2015 The Plasma Dispersion Function: the Hilbert Transform of the Gaussian (New York: Academic Press) pp1–3
[25] Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar
[26] Shoji T, Sakawa Y, Nakazawa S, et al. 1993 Plasma Sources Sci. Technol. 2 5Google Scholar
[27] Swanson D G 1989 Plasma Waves (New York: Academic Press) pp375–376
[28] Lafleur T, Charles C, Boswell R 2010 Phys. Plasmas 17 073508Google Scholar
Catalog
Metrics
- Abstract views: 6313
- PDF Downloads: 96
- Cited By: 0