-
建立了长周期光纤光栅傅里叶模式耦合理论.在分析同向模式耦合时,发现了同向耦合模式的振幅系数间存在傅里叶变换关系.推导了长周期光纤光栅的同向耦合谱和透射谱的通用表达式.该理论是用傅里叶变换分析得出长周期光纤光栅折射率微扰的空域谱,再对该空域谱进行模式同向耦合分析,从而得到长周期光纤光栅光谱特性的通用表达式.根据该理论模拟分析了长周期光纤光栅在不同长度和微扰幅值时的光谱特性,与传统耦合模理论进行了对比分析.结果表明,该长周期光纤光栅傅里叶模式耦合理论具有简单、精确和高效的特点,与实际长周期光纤光栅的透射谱特性一致.应用该理论可分析无过耦合的任意轴向折射率微扰分布的长周期光纤光栅光谱特性.A novel theory, namely, Fourier mode coupling (FMC) theory for long-period fiber gratings (LPFGs) is proposed in this paper. During analyzing the co-propagating coupling between the core mode and cladding modes in LPFGs, the Fourier transform relations among the amplitude coefficients of co-propagating coupled-modes are found for the first time, to the best of authors’ knowledge. The general expressions of the coupling and transmission spectra of LPFGs are also deduced from the combination of Fourier transform with the well-known coupled-mode theory. In the proposed FMC theory, the spectral characteristics of the LPFGs without over-coupling are derived from the calculation of co-propagating mode coupling in the spatial domain spectrum, which is the Fourier transform result of refractive index perturbation in the LPFG. According to the FMC theory, the spectra of the LPFGs in different perturbation amplitudes and lengths are numerically simulated here. A measured transmission spectrum is also compared with the calculated transmission spectra based on the FMC theory and the coupled mode theory, respectively. The comparison shows that the FMC theory and the derived spectra for LPFGs are in consistance with the coupled-mode theory and the practical spectra of LPFGs respectively. The FMC has many features, these being simple, fast and accurate, which could be employed for spectrum analysis of any LPFG with an arbitrary distribution of refractive index perturbation along the fiber axis.
-
Keywords:
- fiber-optic component /
- long-period fiber grating /
- Fourier mode coupling /
- transmission spectrum
[1] Vengsarkar A M, Lemaire P J, Judkins J B, Bhatia V, Erdogan T, Sipe J E 1996 J. Lightwave Technol. 14 58
[2] Erdogan T 1997 J. Opt. Soc. Am. A 14 1760
[3] Erdogan T 1997 J. Lightwave Technol. 15 1277
[4] Chern G W, Wang L A 1999 J. Opt. Soc. Am. A 16 2675
[5] Peral E, Capmany J 1997 J. Lightwave Technol. 15 1295
[6] Bouzid A, Abushagur M A G 1997 Appl. Opt. 36 558
[7] Erdogan T 2000 J. Opt. Soc. Am. A 17 2113
[8] Lee K S, Erdogan T 2001 Electron. Lett. 37 156
[9] Patrick H J, Kersey A D, Bucholtz F 1998 J. Lightwave Technol. 16 1606
[10] MacDougall T W, Pilevar S, Haggans C W, Jackson M A 1998 IEEE Photon. Technol. Lett. 10 1449
[11] Zhang D S, Jiang L, Zhang W G, Li L J, Fan W D, Yuan S Z, Kai G Y, Dong X Y 2003 Acta Phys. Sin. 52 3087 (in Chinese) [张东生、姜 莉、张伟刚、李丽君、范万德、袁树忠、 开桂云、董孝义 2003 52 3087] 〖12] Stegall D B, Erdogan T 1999 IEEE Photon. Technol. Lett. 11 343
[12] Xu X H, Cui Y P 2003 Acta Phys. Sin. 52 96 (in Chinese) [徐新华、崔一平 2003 52 96]
[13] Zhu T, Song Y, Rao Y J, Zhu Y 2009 Acta Phys. Sin. 58 4738 (in Chinese) [朱 涛、宋 韵、饶云江、朱 永 2009 58 4738]
[14] Marcuse D 1974 Theory of Dielectric Optical Waveguide (New York: Academic Press)
[15] Fang J X, Cao Z Q, Yang F Z 1987 Physical Foundation of Optical Waveguide Technology (Shanghai: Shanghai Jiaotong University Press)(in Chinese)[方俊鑫、曹庄琪、杨傅子 1987光波导技术物理基础 (上海:上海交通大学出版社)]
[16] Monerie M 1982 IEEE Microwave Theor. Techn. 30 381
-
[1] Vengsarkar A M, Lemaire P J, Judkins J B, Bhatia V, Erdogan T, Sipe J E 1996 J. Lightwave Technol. 14 58
[2] Erdogan T 1997 J. Opt. Soc. Am. A 14 1760
[3] Erdogan T 1997 J. Lightwave Technol. 15 1277
[4] Chern G W, Wang L A 1999 J. Opt. Soc. Am. A 16 2675
[5] Peral E, Capmany J 1997 J. Lightwave Technol. 15 1295
[6] Bouzid A, Abushagur M A G 1997 Appl. Opt. 36 558
[7] Erdogan T 2000 J. Opt. Soc. Am. A 17 2113
[8] Lee K S, Erdogan T 2001 Electron. Lett. 37 156
[9] Patrick H J, Kersey A D, Bucholtz F 1998 J. Lightwave Technol. 16 1606
[10] MacDougall T W, Pilevar S, Haggans C W, Jackson M A 1998 IEEE Photon. Technol. Lett. 10 1449
[11] Zhang D S, Jiang L, Zhang W G, Li L J, Fan W D, Yuan S Z, Kai G Y, Dong X Y 2003 Acta Phys. Sin. 52 3087 (in Chinese) [张东生、姜 莉、张伟刚、李丽君、范万德、袁树忠、 开桂云、董孝义 2003 52 3087] 〖12] Stegall D B, Erdogan T 1999 IEEE Photon. Technol. Lett. 11 343
[12] Xu X H, Cui Y P 2003 Acta Phys. Sin. 52 96 (in Chinese) [徐新华、崔一平 2003 52 96]
[13] Zhu T, Song Y, Rao Y J, Zhu Y 2009 Acta Phys. Sin. 58 4738 (in Chinese) [朱 涛、宋 韵、饶云江、朱 永 2009 58 4738]
[14] Marcuse D 1974 Theory of Dielectric Optical Waveguide (New York: Academic Press)
[15] Fang J X, Cao Z Q, Yang F Z 1987 Physical Foundation of Optical Waveguide Technology (Shanghai: Shanghai Jiaotong University Press)(in Chinese)[方俊鑫、曹庄琪、杨傅子 1987光波导技术物理基础 (上海:上海交通大学出版社)]
[16] Monerie M 1982 IEEE Microwave Theor. Techn. 30 381
计量
- 文章访问数: 10846
- PDF下载量: 1248
- 被引次数: 0