Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photonic crystal frequency band selecting and power splitting devices based on the energy coupling effect between waveguides

Zhao Xuan Liu Chen Ma Hui-Li Feng Shuai

Citation:

Photonic crystal frequency band selecting and power splitting devices based on the energy coupling effect between waveguides

Zhao Xuan, Liu Chen, Ma Hui-Li, Feng Shuai
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The photonic crystal power splitter based on the energy coupling effect between waveguides has the advantages of compact structure, wide bandwidth, low bending loss, large angle of separation, and no external electromagnetic interference. In this paper, the power splitting characteristics of two-dimensional triangular-lattice photonic crystal coupled waveguide are theoretically studied by using the finite-difference time-domain method, and a functional device is designed in order to achieve different output power ratios within different frequency ranges.In the two-dimensional photonic crystal structure with triangular lattice, we set two adjacent straight waveguides and the light beam is introduced from one of them. Because of the energy coupling effect between the two line defects, the light energy propagates alternately in them. Based on this principle, structures of different coupling lengths are simulated and the interference effect of each surface is considered. The device with the best coupling length is achieved for three different output energy propagating characteristics at different frequencies, which include three-division, two-division and single output cases. That is to say, the incident light beam within a frequency band travels through a particular waveguide; light in another frequency band only flows through the other two output waveguides; light in the third frequency band is assigned to all the three output waveguides equally. However, the frequency band width for the high-quality light beam splitting area as well as the transmittance contrast of the other two functional band areas are not very ideal.Based on the above numerical results, two transmission modes in the coupling waveguides are achieved by changing the cross section shape of the dielectric column in the coupling region and also by changing the connecting position between the output branch waveguide and the energy-coupling waveguide. Through the above change, the splitting performance is further optimized.By detecting and analyzing the relative intensity of the three output waveguides, we can determine the range of the incident light beam. Furthermore, the frequency ranges of the three different light output characteristics can be adjusted flexibly by changing the cross section shape of the dielectric column in the coupling region or by changing the connecting position of output waveguides. The functional device proposed in this paper has a high transmittance contrast ratio and a compact structure, which will promote the practical application of the all-optical functional devices in the fields of large-scale all-optical complex integration.
      Corresponding author: Feng Shuai, fengshuai75@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11374378, 11574408, 61675238), the National Instrumentation Program, China (Grant No. 2012YQ14000508), the Technology Foundation for Selected Overseas Chinese Scholar, and the Undergraduate Innovative Test Program, China (Grant Nos. GCCX2016110007, URTP2016110009).
    [1]

    John S 1987 Phys. Rev. Lett. 58 2486

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    Yu T B, Jiang X Q, Yang J Y, Zhou H F 2007 Phys. Lett. A 369 167

    [4]

    Aghadjani M, Shahabadi M 2013 J. Opt. Soc. Am. B 30 3140

    [5]

    Liao Q H, Zhang X, Xia Q, Yu T B, Chen S W, Liu N H 2013 Acta Phys. Sin. 62 044220 (in Chinese) [廖清华, 张旋, 夏全, 于天宝, 陈淑文, 刘念华 2013 62 044220]

    [6]

    Harris S E, Field J E, Imamoglu A 1990 Phy. Rev. Lett. 64 1107

    [7]

    Kim H J, Park I, Park S G, Lee E H, Lee S G 2004 Opt. Express 12 5625

    [8]

    Park I, Lee H S, Kim H J, Moon K M, Lee S G, Park S G, Lee E H 2004 Opt. Express 6 3599

    [9]

    Liu T, Zakharian A R, Fallahi M, Moloney J V, Mansuripur M 2004 J. Lightwave Technol. 22 12

    [10]

    Chiu W Y, Huang T W, Wu Y H, Huang F H, Chan Y J, Hou C H, Chien H T, Chen C C, Chen S H, Chyi J I 2008 J. Lightwave Technol. 26 5

    [11]

    Fan D H, Wu P, Xin F, Yu T B 2008 Chin. J. Quant. Elect. 25 82 (in Chinese) [范定环, 吴评, 辛锋, 于天宝 2008 量子电子学报 25 82]

    [12]

    Jin X J 2011 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [金晓君 2011 硕士学位论文 (南京: 南京邮电大学)]

    [13]

    Li W, Xu Y H 2011 Laser J. 32 6 (in Chinese) [李未, 徐玉华 2011 激光杂志 32 6]

    [14]

    Miu L P, Xu X M, Yang C Y, Ye T 2011 Chin. J. Quant. Elect. 28 369 (in Chinese) [缪路平, 徐旭明, 杨春云, 叶涛 2011 量子电子学报 28 369]

    [15]

    Li L, Liu G Q, Chen Y H, Tang F L 2013 Acta Phot. Sin. 42 167 (in Chinese) [黎磊, 刘桂强, 陈元浩, 唐发林 2013 光子学报 42 167]

    [16]

    Li L, Liu G Q, Chen Y H 2013 Acta Opt. Sin. 33 0123002 (in Chinese) [黎磊, 刘桂强, 陈元浩 2013 光学学报 33 0123002]

    [17]

    Tan J B, Chen H M 2013 Commun. Technol. 46 27 (in Chinese) [谈继斌, 陈鹤鸣 2013 通信技术 46 27]

    [18]

    Cheng W, Li J S 2014 Acta Phot. Sin. 43 0123002 (in Chinese) [程伟, 李九生 2014 光子学报 43 0123002]

    [19]

    Zhou J, Tian H P, Yang D Q, Liu Q, Huang L J, Ji Y F 2014 Appl. Opt. 53 8012

    [20]

    Tee D C, Kambayashi T, Sandoghchi S R, Tamchek N, Adikan F R M 2012 J. Lightwave Technol. 30 2818

    [21]

    Tee D C, Tamchek N, Shee Y G, Adikan F R M 2014 Opt. Express 22 24241

    [22]

    Yu T B, Wang M H, Jiang X Q, Yang J Y 2006 Acta Phys. Sin. 55 1851 (in Chinese) [于天宝, 王明华, 江晓清, 杨建义 2006 55 1851]

    [23]

    Xu X M, Yue Y L, Fang L G, Zhu G X, Qian X X 2008 Study Opt. Commun. 149 50 (in Chinese) [徐旭明, 乐庸炉, 方利广, 朱桂新, 钱小霞 2008 光通信研究 149 50]

    [24]

    Xu X M, Li W, Fang L G, Yu T B, Yue Y L, Yang C Y 2009 Laser Technol. 33 416 (in Chinese) [徐旭明, 李未, 方利广, 于天宝, 乐庸炉, 杨春云 2009 激光技术 33 416]

    [25]

    Saidani N, Belhadj W, AbdelMalek F, Bouchriha H 2012 Opt. Commun. 285 3487

    [26]

    Wu Y D, Li J J, Chen H Y 2009 Semicond. Optoelectron. 30 823 (in Chinese) [吴耀德, 李继军, 陈海燕 2009 半导体光电 30 823]

    [27]

    Zhang J, Yu T B, Liu N H, Liao Q H, He L J 2011 Acta Phys. Sin. 60 104217 (in Chinese) [张军, 于天宝, 刘念华, 廖清华, 何灵娟 2011 60 104217]

    [28]

    Yu B, Zhang L H, Chen X Y, Yang F, Sun X H, Ge J X 2015 Optoelectr. Technol. 35 155 (in Chinese) [于兵, 张龙华, 陈晓晔, 杨斐, 孙小菡, 葛俊祥 2015 光电子技术 35 155]

    [29]

    Xu X M, Li W, Fang L G, Yue Y L, Yang C Y, Qian X X 2008 Study On Opt. Commun. 150 34 (in Chinese) [徐旭明, 李未, 方利广, 乐庸炉, 杨春云, 钱小霞 2008 光通信研究 150 34]

  • [1]

    John S 1987 Phys. Rev. Lett. 58 2486

    [2]

    Yablonovitch E 1987 Phys. Rev. Lett. 58 2059

    [3]

    Yu T B, Jiang X Q, Yang J Y, Zhou H F 2007 Phys. Lett. A 369 167

    [4]

    Aghadjani M, Shahabadi M 2013 J. Opt. Soc. Am. B 30 3140

    [5]

    Liao Q H, Zhang X, Xia Q, Yu T B, Chen S W, Liu N H 2013 Acta Phys. Sin. 62 044220 (in Chinese) [廖清华, 张旋, 夏全, 于天宝, 陈淑文, 刘念华 2013 62 044220]

    [6]

    Harris S E, Field J E, Imamoglu A 1990 Phy. Rev. Lett. 64 1107

    [7]

    Kim H J, Park I, Park S G, Lee E H, Lee S G 2004 Opt. Express 12 5625

    [8]

    Park I, Lee H S, Kim H J, Moon K M, Lee S G, Park S G, Lee E H 2004 Opt. Express 6 3599

    [9]

    Liu T, Zakharian A R, Fallahi M, Moloney J V, Mansuripur M 2004 J. Lightwave Technol. 22 12

    [10]

    Chiu W Y, Huang T W, Wu Y H, Huang F H, Chan Y J, Hou C H, Chien H T, Chen C C, Chen S H, Chyi J I 2008 J. Lightwave Technol. 26 5

    [11]

    Fan D H, Wu P, Xin F, Yu T B 2008 Chin. J. Quant. Elect. 25 82 (in Chinese) [范定环, 吴评, 辛锋, 于天宝 2008 量子电子学报 25 82]

    [12]

    Jin X J 2011 M. S. Thesis (Nanjing: Nanjing University of Posts and Telecommunications) (in Chinese) [金晓君 2011 硕士学位论文 (南京: 南京邮电大学)]

    [13]

    Li W, Xu Y H 2011 Laser J. 32 6 (in Chinese) [李未, 徐玉华 2011 激光杂志 32 6]

    [14]

    Miu L P, Xu X M, Yang C Y, Ye T 2011 Chin. J. Quant. Elect. 28 369 (in Chinese) [缪路平, 徐旭明, 杨春云, 叶涛 2011 量子电子学报 28 369]

    [15]

    Li L, Liu G Q, Chen Y H, Tang F L 2013 Acta Phot. Sin. 42 167 (in Chinese) [黎磊, 刘桂强, 陈元浩, 唐发林 2013 光子学报 42 167]

    [16]

    Li L, Liu G Q, Chen Y H 2013 Acta Opt. Sin. 33 0123002 (in Chinese) [黎磊, 刘桂强, 陈元浩 2013 光学学报 33 0123002]

    [17]

    Tan J B, Chen H M 2013 Commun. Technol. 46 27 (in Chinese) [谈继斌, 陈鹤鸣 2013 通信技术 46 27]

    [18]

    Cheng W, Li J S 2014 Acta Phot. Sin. 43 0123002 (in Chinese) [程伟, 李九生 2014 光子学报 43 0123002]

    [19]

    Zhou J, Tian H P, Yang D Q, Liu Q, Huang L J, Ji Y F 2014 Appl. Opt. 53 8012

    [20]

    Tee D C, Kambayashi T, Sandoghchi S R, Tamchek N, Adikan F R M 2012 J. Lightwave Technol. 30 2818

    [21]

    Tee D C, Tamchek N, Shee Y G, Adikan F R M 2014 Opt. Express 22 24241

    [22]

    Yu T B, Wang M H, Jiang X Q, Yang J Y 2006 Acta Phys. Sin. 55 1851 (in Chinese) [于天宝, 王明华, 江晓清, 杨建义 2006 55 1851]

    [23]

    Xu X M, Yue Y L, Fang L G, Zhu G X, Qian X X 2008 Study Opt. Commun. 149 50 (in Chinese) [徐旭明, 乐庸炉, 方利广, 朱桂新, 钱小霞 2008 光通信研究 149 50]

    [24]

    Xu X M, Li W, Fang L G, Yu T B, Yue Y L, Yang C Y 2009 Laser Technol. 33 416 (in Chinese) [徐旭明, 李未, 方利广, 于天宝, 乐庸炉, 杨春云 2009 激光技术 33 416]

    [25]

    Saidani N, Belhadj W, AbdelMalek F, Bouchriha H 2012 Opt. Commun. 285 3487

    [26]

    Wu Y D, Li J J, Chen H Y 2009 Semicond. Optoelectron. 30 823 (in Chinese) [吴耀德, 李继军, 陈海燕 2009 半导体光电 30 823]

    [27]

    Zhang J, Yu T B, Liu N H, Liao Q H, He L J 2011 Acta Phys. Sin. 60 104217 (in Chinese) [张军, 于天宝, 刘念华, 廖清华, 何灵娟 2011 60 104217]

    [28]

    Yu B, Zhang L H, Chen X Y, Yang F, Sun X H, Ge J X 2015 Optoelectr. Technol. 35 155 (in Chinese) [于兵, 张龙华, 陈晓晔, 杨斐, 孙小菡, 葛俊祥 2015 光电子技术 35 155]

    [29]

    Xu X M, Li W, Fang L G, Yue Y L, Yang C Y, Qian X X 2008 Study On Opt. Commun. 150 34 (in Chinese) [徐旭明, 李未, 方利广, 乐庸炉, 杨春云, 钱小霞 2008 光通信研究 150 34]

  • [1] Zhang Yi-Yi, Wei Xue-Ling, Nong Jie, Ma Han-Si, Ye Zi-Yang, Xu Wen-Jie, Zhang Zhen-Rong, Yang Jun-Bo. Ultra-compact In2Se3 tunable power splitter based on direct binary search algorithm. Acta Physica Sinica, 2023, 72(15): 154207. doi: 10.7498/aps.72.20230459
    [2] Ke Hang, Li Pei-Li, Shi Wei-Hua. Two-dimensional photonic crystal waveguide 1×5 beam splitter reversely designed by downhill-simplex algorithm. Acta Physica Sinica, 2022, 71(14): 144204. doi: 10.7498/aps.71.20220328
    [3] Zuo Yi-Fan, Li Pei-Li, Luan Kai-Zhi, Wang Lei. Heterojunction polarization beam splitter based on self-collimation in photonic crystal. Acta Physica Sinica, 2018, 67(3): 034204. doi: 10.7498/aps.67.20171815
    [4] Zhan Sheng-Gao, Liang Bin-Ming, Zhu Xing-Fu, Chen Jia-Bi, Zhuang Song-Lin. Research of the characteristics of photonic crystals based on air holes sub-wavelength imaging. Acta Physica Sinica, 2014, 63(15): 154212. doi: 10.7498/aps.63.154212
    [5] Cheng Zhi-Ming, Wu Feng-Tie, Zhang Qian-An, Zheng Wei-Tao. New method of generating self-imaged optical bottle beams and particles captured. Acta Physica Sinica, 2012, 61(9): 094201. doi: 10.7498/aps.61.094201
    [6] Liu Fa, Xu Chen, Zhao Zhen-Bo, Zhou Kang, Xie Yi-Yang, Mao Ming-Ming, Wei Si-Min, Cao Tian, Sheng Guang-Di. Study on influence of oxide aperture shape on modal characteristics of VCSELs. Acta Physica Sinica, 2012, 61(5): 054203. doi: 10.7498/aps.61.054203
    [7] Tong Xing, Han Kui, Shen Xiao-Peng, Wu Qiong-Hua, Zhou Fei, Ge Yang, Hu Xiao-Juan. Equal intensity polarization-independent beam splitter based on photonic crystal self-collimation ring resonator. Acta Physica Sinica, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [8] Kong Yan-Mei, Gao Chao-Qun, Jing Yu-Peng, Chen Da-Peng. The research of the air-sensitive sensor based on thephotonic crystal beam splitter. Acta Physica Sinica, 2011, 60(5): 054215. doi: 10.7498/aps.60.054215
    [9] Chen He-Ming, Meng Qing. Design of high efficiency photonic crystal terahertz filter. Acta Physica Sinica, 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [10] Kong Ling-Kai, Zheng Zhi-Qiang, Feng Zhuo-Hong, Li Xiao-Yan, Jiang Cui-Hua, Ming Hai. Focusing property of two-dimensional photonic crystals with ring-shaped air holes. Acta Physica Sinica, 2009, 58(11): 7702-7707. doi: 10.7498/aps.58.7702
    [11] Liu Yang, Gong Hua-Rong, Wei Yan-Yu, Gong Yu-Bin, Wang Wen-Xiang, Liao Fu-Jiang. An effective method for suppressing the mode competition in a rectangular cavity loaded with photonic crystals. Acta Physica Sinica, 2009, 58(11): 7845-7851. doi: 10.7498/aps.58.7845
    [12] Xi Li-Xia, Tang Xian-Feng, Wang Shao-Kang, Zhang Xiao-Guang. Design and optimization of phase regenerator with photonic crystal fiber. Acta Physica Sinica, 2009, 58(9): 6243-6247. doi: 10.7498/aps.58.6243
    [13] Huang Yan, Zhang Wei, Wang Yin, Huang Yi-Dong, Peng Jiang-De. Theoretical analysis of novel Brillouin scattering properties in photonic crystal fibers based on silica rod model. Acta Physica Sinica, 2009, 58(3): 1731-1737. doi: 10.7498/aps.58.1731
    [14] Yin Hai-Rong, Gong Yu-Bin, Wei Yan-Yu, Yue Ling-Na, Lu Zhi-Gang, Gong Hua-Rong, Huang Min-Zhi, Wang Wen-Xiang. Mode and band analysis of finite dielectric photonic crystals. Acta Physica Sinica, 2008, 57(6): 3562-3570. doi: 10.7498/aps.57.3562
    [15] Shen Xiao-Peng, Han Kui, Li Hai-Peng, Shen Yi-Feng, Wang Zi-Yu. Polarization beam splitter for self-collimated beams in photonic crystals. Acta Physica Sinica, 2008, 57(3): 1737-1741. doi: 10.7498/aps.57.1737
    [16] Lin Xu-Sheng, Wu Li-Jun, Guo Qi, Hu Wei, Lan Sheng. Impact of a stripe waveguide to coupled defect modes of photonic crystals. Acta Physica Sinica, 2008, 57(12): 7717-7724. doi: 10.7498/aps.57.7717
    [17] Wang Ke, Zheng Wan-Hua, Ren Gang, Du Xiao-Yu, Xing Ming-Xin, Chen Liang-Hui. Design and optimization of photonic crystal coupling layer for bi-color quantum well infrared photodetectors. Acta Physica Sinica, 2008, 57(3): 1730-1736. doi: 10.7498/aps.57.1730
    [18] Yin Hai-Rong, Gong Yu-Bin, Wei Yan-Yu, Lu Zhi-Gang, Gong Hua-Rong, Yue Ling-Na, Huang Min-Zhi, Wang Wen-Xiang. Full-mode analysis of a two-dimensional photonic crystal waveguide. Acta Physica Sinica, 2007, 56(3): 1590-1597. doi: 10.7498/aps.56.1590
    [19] Li Yi-Yu, Gu Pei-Fu, Li Ming-Yu, Zhang Jin-Long, Liu Xu. Self-collimation and subwavelength lensing in wavy two-dimensional photonic crystals. Acta Physica Sinica, 2006, 55(5): 2596-2600. doi: 10.7498/aps.55.2596
    [20] Feng Li-Juan, Jiang Hai-Tao, Li Hong-Qiang, Zhang Ye-Wen, Chen Hong. The dispersive characteristics of impurity bands in coupled-resonator optical waveguides of photonic crystals. Acta Physica Sinica, 2005, 54(5): 2102-2105. doi: 10.7498/aps.54.2102
Metrics
  • Abstract views:  6460
  • PDF Downloads:  246
  • Cited By: 0
Publishing process
  • Received Date:  26 December 2016
  • Accepted Date:  05 March 2017
  • Published Online:  05 June 2017

/

返回文章
返回
Baidu
map