Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Effects of electron temperature on energy deposition properties of electromagnetic modes propagating in helicon plasma

Li Wen-Qiu Zhao Bin Wang Gang

Citation:

Effects of electron temperature on energy deposition properties of electromagnetic modes propagating in helicon plasma

Li Wen-Qiu, Zhao Bin, Wang Gang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Understanding the power deposition characteristic of high density helicon wave plasma source is critical for further investigating into the discharge mechanism of helicon wave discharge. Based on the warm plasma dielectric tensor model which contains both the particle thermal effect and temperature anisotropy and using the insulting boundary condition, the eigenmode dispersion relation of helicon wave and Trivelpiece-Gould (TG) wave propagating in radially uniform plasma column are numerically obtained. Then based on the eigenmode dispersion relation and exact field distribution in the plasma column, the mode coupling properties between the helicon wave and TG wave, the parametric dependence of the cyclotron damping properties of the electron cyclotron wave (TG wave) and power deposition properties of the m = –1, 0, +1 modes under moderate plasma density and low magnetic fields conditions are theoretically investigated in typical helicon plasma parameter range. The detailed investigations are shown below. Under typical helicon plasma parameter conditions, i.e. wave frequency ω/2π = 13.56 MHz and the ion temperature is one-tenth of the electron temperature, there exist a critical magnetic field value B0,c and a critical electron temperature value Te,c for which under the conditions of B0 < B0,c the helicon wave becomes an evanescent wave and the TG wave becomes an evanescent wave when Te < Te,c. The cyclotron damping of the TG wave dramatically increases as the wave frequency approaches to the electron cyclotron frequency. The TG wave becomes a growth wave when the ratio of perpendicular electron temperature to parallel electron temperature is above a certain value. For the high magnetic field, i.e. ω/ωce = 0.1, most of the power deposition is deposited in the central core region, while for the low magnetic field, i.e. ω/ωce = 0.9, the power is deposited mainly in the outer region of plasma column. For typical helicon plasma electron temperature range, Te ∈ (3 eV, 5 eV), the energy depositions induced by the collisional damping and Landau damping of the TG wave are dominant for different electron temperature ranges, which implies that different damping mechanisms have different heating intensities for electrons. Under current parameter condition, compared with the m = +1 mode, the m = –1 and m = 0 mode of the TG wave play major role in the power deposition process, although the cyclotron damping of the TG wave dominates the power deposition in this typical electron temperature range. All these conclusions provide some useful clues for us to better understand the high ionization mechanism of helicon wave discharge.
      Corresponding author: Li Wen-Qiu, beiste@163.com
    • Funds: Project supported by the Government Sponsored Study Abroad Program of the Chinese Scholarship Council (CSC) (Grant No. 201804910897) and the Science and Technology Innovation Leading Talent Project of the National “Ten Thousand Talents Program” (Grant No. Y8BF130272)
    [1]

    Diaz F R C 2000 Sci. Am. 283 90

    [2]

    Boswell R W, Sutherland O, Charles C, et al. 2004 Phys. Plasmas 11 5125Google Scholar

    [3]

    Arefiev A V, Breizman B N 2004 Phys. Plasmas 11 2942Google Scholar

    [4]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol., A 31 050825Google Scholar

    [5]

    Ho T M, Baturkin V, Grimm C, et al. 2017 Space Sci. Rev. 208 339Google Scholar

    [6]

    Mikouchi T, Komatsu M, Hagiya K, et al. 2014 Earth, Planets Space 66 1Google Scholar

    [7]

    Fiore G, Fedele R, de Angelis U 2014 Phys. Plasmas 21 113105Google Scholar

    [8]

    Reuter D C, Simon A A, Hair J, et al. 2018 Space Sci. Rev. 214 54Google Scholar

    [9]

    McMahon J W, Scheeres D J, Hesar S G, et al. 2018 Space Sci. Rev. 214 43Google Scholar

    [10]

    Bos B J, Ravine M A, Caplinger M, et al. 2018 Space Sci. Rev. 214 37Google Scholar

    [11]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar

    [12]

    Shamrai K P 1998 Plasma Sources Sci. Technol. 7 499Google Scholar

    [13]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

    [14]

    Arnush D 2000 Phys. Plasmas 7 3042Google Scholar

    [15]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [16]

    Blackwell D D, Madziwa T G, Arnush D, et al. 2002 Phys. Rev. Lett. 88 145002Google Scholar

    [17]

    Kim S H, Hwang Y S 2008 Plasma Phys. Controlled Fusion 50 035007Google Scholar

    [18]

    Isayama S, Hada T, Shinohara S, et al. 2016 Phys. Plasmas 23 063513Google Scholar

    [19]

    成玉国, 程谋森, 王墨戈, 等 2014 63 035203Google Scholar

    Cheng Y G, Cheng M S, Wang M G, et al. 2014 Acta Phys.Sin. 63 035203Google Scholar

    [20]

    平兰兰, 张新军, 杨桦, 等 2019 68 205201Google Scholar

    Ping L L, Zhang X J, Yang H, et al. 2019 Acta Phys.Sin. 68 205201Google Scholar

    [21]

    Arnush D, Chen F F 1998 Phys. Plasmas 5 1239Google Scholar

    [22]

    Sakawa Y, Kunimatsu H, Kikuchi H, Fukui Y, Shoji T 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [23]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [24]

    Fuchs V, Ram A K, Schultz S D, Bers A 1995 Phys. Plasmas 2 1637Google Scholar

    [25]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: the Hilbert Transform of the Gaussian (New York: Academic Press) pp1–3

    [26]

    Gasimov G R, Abusutash Z A 2015 Int. J. Differ. Equ. Appl. 14 252

  • 图 1  被绝缘边界包裹的等离子体柱横向截面示意图

    Figure 1.  Cross section of plasma column surround by insulating boundary.

    图 2  (a) 静磁场与 (b) 电子温度对whistler waves的ES与EM分支耦合关系的影响

    Figure 2.  Influences of (a) magnetic field and (b) electron temperature on the mode coupling properties of ES and EM branches for whistler waves.

    图 3  Whistler waves的色散关系

    Figure 3.  Dispersion relation of the whistler waves.

    图 4  Whistler waves纵向波数的实部与虚部随纵向电子温度的变化关系

    Figure 4.  Corresponding relation of real and imaginary parts of the axial wave number of the whistler waves with the axial electron temperature.

    图 5  Whistler waves纵向波数的实部与虚部随电子温度各向异性因子的变化关系

    Figure 5.  Corresponding relation of real and imaginary parts of the axial wave number of the whistler waves with the electron temperature anisotropy factor

    图 6  总电场径向分布 (a), (b), (c) ω/ωce = 0.1; (d), (e), (f) ω/ωce = 0.9

    Figure 6.  Total electric field radial profiles for (a), (b), (c) ω/ωce = 0.1 and (d), (e), (f) ω/ωce = 0.9.

    图 7  总功率沉积径向分布 (a), (b), (c) ω/ωce = 0.1; (d), (e), (f) ω/ωce = 0.9

    Figure 7.  Radial distributions of the total power deposition for: (a), (b), (c) ω/ωce = 0.1 and (d), (e), (f) ω/ωce = 0.9.

    图 8  螺旋波与TG波的功率沉积随轴向静磁场的变化 (a) m = –1 模; (b) m = 0 模; (c) m = +1 模

    Figure 8.  Power deposition profiles of the helicon and TG waves are given as functions of axial static magnetic fields for (a) m = –1 mode; (b) m = 0 mode; (c) m = +1 mode.

    图 9  螺旋波与TG波功率沉积随电子温度的变化 (a) m = –1 模; (b) m = 0 模; (c) m = +1 模

    Figure 9.  Power deposition profiles of helicon and TG waves are given as functions of electron temperature for (a) m = –1 mode; (b) m = 0 mode; (c) m = +1 mode.

    图 10  螺旋波与TG波的碰撞阻尼和朗道阻尼致使的功率沉积随电子温度的变化 (a) m = –1 模; (b) m = 0 模

    Figure 10.  Power deposition profiles induced by the collisional damping and Landau damping of helicon and TG waves are given as functions of electron temperature for (a) m = –1 mode; (b) m = 0 mode.

    表 1  本征模色散关系元素

    Table 1.  Elements of eigenmode dispersion relation.

    ${Q_{s\ell }}$$\ell = 1$$\ell = {\rm{2}}$$\ell = {\rm{3}}$
    $s = 1$${{\rm{J}}_m}({k_{ \bot , {\rm{H}}}}a)$${{\rm{J}}_m}({k_{ \bot , TG}}a)$$- {\rm{j} }{k_{ \bot , v} }{\rm{H} }_m^{(1)}({k_{ \bot , v} }a)$
    $s = {\rm{2}}$$k_{ \bot , {\rm{TG} } }^2[ m{k_z}{ {\rm{J} }_m}({k_{ \bot , {\rm{H} } } }a) \\ +{\beta _1}{k_{ \bot , {\rm{H} } } }a {\rm{J} }_m^\prime ({k_{ \bot , {\rm{H} } } }a) ]$$k_{ \bot , {\rm{H} } }^2[ m{k_z}{ {\rm{J} }_m}({k_{ \bot , {\rm{TG} } } }a) \\ +{\beta _2}{k_{ \bot , {\rm{TG} } } }a {\rm{J} }_m^\prime ({k_{ \bot , {\rm{TG} } } }a) ]$${\rm{j} }k_{ \bot , {\rm{H} } }^2 k_{ \bot , {\rm{TG} } }^2 m{\rm{H} }_m^{(1)}({k_{ \bot , v} }a)$
    $s = {\rm{3}}$$k_{ \bot , {\rm{TG} } }^2[ m{\beta _1}{ {\rm{J} }_m}({k_{ \bot , {\rm{H} } } }a) \\ +{k_z}{k_{ \bot , {\rm{H} } } }a {\rm{J} }_m^\prime ({k_{ \bot , {\rm{H} } } }a) ]$$k_{ \bot , {\rm{H} } }^2[ m{\beta _2}{ {\rm{J} }_m}({k_{ \bot , {\rm{TG} } } }a) \\ +{k_z}{k_{ \bot , {\rm{TG} } } }a {\rm{J} }_m^\prime ({k_{ \bot , {\rm{TG} } } }a) ]$${\rm{j} }k_{ \bot , {\rm{H} } }^2 k_{ \bot , {\rm{TG} } }^2{k_{ \bot , v} }a{\rm{H} }_m^{(1)\prime }({k_{ \bot , v} }a)$
    DownLoad: CSV
    Baidu
  • [1]

    Diaz F R C 2000 Sci. Am. 283 90

    [2]

    Boswell R W, Sutherland O, Charles C, et al. 2004 Phys. Plasmas 11 5125Google Scholar

    [3]

    Arefiev A V, Breizman B N 2004 Phys. Plasmas 11 2942Google Scholar

    [4]

    Donnelly V M, Kornblit A 2013 J. Vac. Sci. Technol., A 31 050825Google Scholar

    [5]

    Ho T M, Baturkin V, Grimm C, et al. 2017 Space Sci. Rev. 208 339Google Scholar

    [6]

    Mikouchi T, Komatsu M, Hagiya K, et al. 2014 Earth, Planets Space 66 1Google Scholar

    [7]

    Fiore G, Fedele R, de Angelis U 2014 Phys. Plasmas 21 113105Google Scholar

    [8]

    Reuter D C, Simon A A, Hair J, et al. 2018 Space Sci. Rev. 214 54Google Scholar

    [9]

    McMahon J W, Scheeres D J, Hesar S G, et al. 2018 Space Sci. Rev. 214 43Google Scholar

    [10]

    Bos B J, Ravine M A, Caplinger M, et al. 2018 Space Sci. Rev. 214 37Google Scholar

    [11]

    Shamrai K P, Taranov V B 1996 Plasma Sources Sci. Technol. 5 474Google Scholar

    [12]

    Shamrai K P 1998 Plasma Sources Sci. Technol. 7 499Google Scholar

    [13]

    Chen F F, Arnush D 1997 Phys. Plasmas 4 3411Google Scholar

    [14]

    Arnush D 2000 Phys. Plasmas 7 3042Google Scholar

    [15]

    Mouzouris Y, Scharer J E 1998 Phys. Plasmas 5 4253Google Scholar

    [16]

    Blackwell D D, Madziwa T G, Arnush D, et al. 2002 Phys. Rev. Lett. 88 145002Google Scholar

    [17]

    Kim S H, Hwang Y S 2008 Plasma Phys. Controlled Fusion 50 035007Google Scholar

    [18]

    Isayama S, Hada T, Shinohara S, et al. 2016 Phys. Plasmas 23 063513Google Scholar

    [19]

    成玉国, 程谋森, 王墨戈, 等 2014 63 035203Google Scholar

    Cheng Y G, Cheng M S, Wang M G, et al. 2014 Acta Phys.Sin. 63 035203Google Scholar

    [20]

    平兰兰, 张新军, 杨桦, 等 2019 68 205201Google Scholar

    Ping L L, Zhang X J, Yang H, et al. 2019 Acta Phys.Sin. 68 205201Google Scholar

    [21]

    Arnush D, Chen F F 1998 Phys. Plasmas 5 1239Google Scholar

    [22]

    Sakawa Y, Kunimatsu H, Kikuchi H, Fukui Y, Shoji T 2003 Phys. Rev. Lett. 90 105001Google Scholar

    [23]

    Huba J D 2016 NRL Plasma Formulary (Washington: Naval Research Laboratory) p34

    [24]

    Fuchs V, Ram A K, Schultz S D, Bers A 1995 Phys. Plasmas 2 1637Google Scholar

    [25]

    Fried B D, Conte S D 2015 The Plasma Dispersion Function: the Hilbert Transform of the Gaussian (New York: Academic Press) pp1–3

    [26]

    Gasimov G R, Abusutash Z A 2015 Int. J. Differ. Equ. Appl. 14 252

  • [1] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang. Influence of electron temperature anisotropy on the m = 1 helicon mode power deposition characteristic. Acta Physica Sinica, 2024, 73(7): 075202. doi: 10.7498/aps.73.20231759
    [2] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Ma Wei-Cong, Wang Gang. Radiation enhancement phenomenon of isotropic plasma layer coated cylinderical metal antenna. Acta Physica Sinica, 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [3] Li Wen-Qiu, Tang Yan-Na, Liu Ya-Lin, Wang Gang. Influence of electron temperature anisotropy on wave mode propagation and power deposition characteristics in helicon plasma. Acta Physica Sinica, 2023, 72(5): 055202. doi: 10.7498/aps.72.20222048
    [4] Su Rui-Xia, Huang Xia, Zheng Zhi-Gang. Lattice wave solution and its dispersion relation of two coupled Frenkel-Kontorova chains. Acta Physica Sinica, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [5] Ji Pei-Yu, Huang Tian-Yuan, Chen Jia-Li, Zhuge Lan-Jian, Wu Xue-Mei. In-situ diagnosis of Ar/CH4 helicon wave plasma for synthesis of carbon nanomaterials. Acta Physica Sinica, 2021, 70(9): 097201. doi: 10.7498/aps.70.20201809
    [6] Yang Jian-Rong, Mao Jie-Jian, Wu Qi-Cheng, Liu Ping, Huang Li. Drift wave in strong collisional dusty magnetoplasma. Acta Physica Sinica, 2020, 69(17): 175201. doi: 10.7498/aps.69.20200468
    [7] Li Wen-Qiu, Zhao Bin, Wang Gang, Xiang Dong. Parametric analysis of mode coupling and liner energy deposition properties of helicon and Trivelpiece-Gould waves in helicon plasma. Acta Physica Sinica, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [8] Ping Lan-Lan, Zhang Xin-Jun, Yang Hua, Xu Guo-Sheng, Chang Lei, Wu Dong-Sheng, Lü Hong, Zheng Chang-Yong, Peng Jin-Hua, Jin Hai-Hong, He Chao, Gan Gui-Hua. Optimal design of helicon wave antenna and numerical investigation into power deposition on helicon physics prototype experiment. Acta Physica Sinica, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [9] Zhang Kai, Du Chun-Guang, Gao Jian-Cun. Long-range surface plasmon polariton enhancement in double-electrode structure. Acta Physica Sinica, 2017, 66(22): 227302. doi: 10.7498/aps.66.227302
    [10] Li Wen-Qiu, Wang Gang, Su Xiao-Bao. Analysis of mode radiation characteristics in a non-magnetized cold plasma column. Acta Physica Sinica, 2017, 66(5): 055201. doi: 10.7498/aps.66.055201
    [11] Li Xiao-Ze, Teng Yan, Wang Jian-Guo, Song Zhi-Min, Zhang Li-Jun, Zhang Yu-Chuan, Ye Hu. Mode selection in surface wave oscillator with overmoded structure. Acta Physica Sinica, 2013, 62(8): 084103. doi: 10.7498/aps.62.084103
    [12] Liu San-Qiu, Guo Hong-Mei. Transverse dispersion laws in ultra-relativistic plasma with fast electron distribution. Acta Physica Sinica, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [13] Liu Bing-Can, Lu Zhi-Xin, Yu Li. The dispersion relation for surface plasmon at a metal-Kerr nonlinear medium interface. Acta Physica Sinica, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [14] Ji Pei-Yong, Lu Nan, Zhu Jun. Dispersion relation and Landau damping of linear waves in quantum plasma. Acta Physica Sinica, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [15] Wang Liang, Cao Jin-Xiang, Wang Yan, Niu Tian-Ye, Wang Ge, Zhu Ying. Experimental study of propagation time of electromagnetic pulse through laboratory plasma. Acta Physica Sinica, 2007, 56(3): 1429-1433. doi: 10.7498/aps.56.1429
    [16] Zhao Guo-Wei, Xu Yue-Min, Chen Cheng. Calculation of dispersion relation and radiation pattern of plasma antenna. Acta Physica Sinica, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [17] Zhou Guo-Cheng, Cao Jin-Bin, Wang De-Ju, Cai Chun-Lin. Low-frequency waves in collisionless plasma current sheet. Acta Physica Sinica, 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [18] Xie Hong-Quan, Liu Pu-Kun, Li Cheng-Yue, Yan Yang, Liu Sheng-Gang. Analysis of the characteristics of low-frequency modes in a corrugated waveguide filled with plasma. Acta Physica Sinica, 2004, 53(9): 3114-3118. doi: 10.7498/aps.53.3114
    [19] Yu Wei, Liu Li-Hui, Hou Hai-Hong, Ding Xue-Cheng, Han Li, Fu Guang-Sheng. Silicon nitride films prepared by helicon wave plasam-enhanced chemical vapour deposition. Acta Physica Sinica, 2003, 52(3): 687-691. doi: 10.7498/aps.52.687
    [20] YU SHENG, LI HONG-FU, XIE ZHONG-LIAN, LUO YONG. A NONLINEAR SIMULATION ON BEAM-WAVE INTERACTION FOR HIGH-HARMONIC COMPLEX CAVITY GYROTRON WITH RADUAL TRANSITION. Acta Physica Sinica, 2000, 49(12): 2455-2459. doi: 10.7498/aps.49.2455
Metrics
  • Abstract views:  5439
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2020
  • Accepted Date:  11 July 2020
  • Available Online:  13 November 2020
  • Published Online:  05 November 2020

/

返回文章
返回
Baidu
map