-
Fluorescent microscopic imaging technology has the characteristics of strong labeling capability, high signal strength, low experimental cost, simple imaging process, and imaging from living to in vitro, which is widely used in biological analysis imaging research such as tumor cell imaging, drug distribution in vivo detection, but how to simultaneously have both a wide field of view and a high resolution is a major difficulty in the current field of fluorescence microscopic imaging. Planar silicon waveguides have been found to be able to achieve a wide range of imaging of ultra-thin samples. However, they require sputtering deposition or ion beam etching and other preparation processes. The related processes are complex and equipment required is expensive. In this work, a planar-waveguide-type fluorescence microscope device based on direct picosecond-laser-writing is designed, in which picosecond laser is used to etch the glass surface to rapidly prepare micron sized grooves, and the low-cost and batch-preparation of glass based planar waveguides is further realized by spinning SU-8 photoresist. The waveguide diameter and depth can be customized by adjusting laser processing power, frequency, scanning speed and other parameters. The microscopic detection experiment with using Rhodamine B fluorescent molecule verifies that the direct laser-writing glass based planar waveguide fully meets the requirements for biological imaging with high resolution and large field of view. This simple and rapid processing method can effectively improve the the fluorescence imaging.
[1] Vysniauskas A, Lopez-Duarte I, Duchemin N, Vu T T, Wu Y L, Budynina E M, Volkova Y A, Cabrera E P, Ramirez-Ornelas D E, Kuimova M K 2017 Phys. Chem. Chem. Phys. 19 25252Google Scholar
[2] Witte S, Negrean A, Lodder J C, de Kock C P J, Silva G T, Mansvelder H D, Groot M L 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5970Google Scholar
[3] Kuimova M K 2012 Phys. Chem. Chem. Phys. 14 12671Google Scholar
[4] Yoon S, Kim M, Jang M, Choi Y, Choi W, Kang S, Choi W 2020 Nat. Rev. Phys. 2 141Google Scholar
[5] Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar
[6] Querard J, Zhang R K, Kelemen Z, Plamont M A, Xie X J, Chouket R, Roemgens I, Korepina Y, Albright S, Ipendey E, Volovitch M, Sladitschek H L, Neveu P, Gissot L, Gautier A, Faure J D, Croquette V, Le Saux T, Jullien L 2017 Nat. Commun. 8 2173Google Scholar
[7] Wang L, Pitter M C, Somekh M G 2010 Appl. Opt. 49 6160Google Scholar
[8] Schneckenburger H, Richter V 2021 Photonics 8 275Google Scholar
[9] Moo E K, Abusara Z, Abu Osman N A, Pingguan-Murphy B, Herzog W 2013 J. Biomech. 46 2024Google Scholar
[10] Nishiyama H, Suga M, Ogura T, Maruyama Y, Koizumi M, Mio K, Kitamura S, Sato C 2010 J. Struct. Biol. 169 438Google Scholar
[11] Kyrish M, Dobbs J, Jain S, Wang X, Yu D H, Richards-Kortum R, Tkaczyk T S 2013 J. Biomed. Opt. 18 096003Google Scholar
[12] Lanzano LHernandez I C, Castello M, Gratton E, Diaspro A, Vicidomini G 2015 Nat. Commun. 6 6701Google Scholar
[13] 王美昌, 于斌, 张炜, 林丹樱, 屈军乐 2020 69 238701Google Scholar
Wang M C, Yu B, Zhang W, Lin D Y, Qu J L 2020 Acta Phys. Sin. 69 238701Google Scholar
[14] Chen S Y, Wang Z C, Zhang D, Wang A M, Chen L Y, Cheng H P, Wu R L 2020 Neurosci. Bull. 36 1182Google Scholar
[15] Chatterjee K, Pratiwi F W, Wu F C M, Chen P L, Chen B C 2018 Appl. Spectrosc. 72 1137Google Scholar
[16] Santi P A 2011 J. Histochem. Cytochem. 59 129Google Scholar
[17] Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer E H K 2011 Plant J. 68 377Google Scholar
[18] Senarathna J, Yu H, Deng C, Zou A L, Issa J B, Hadjiabadi D H, Gil S, Wang Q H, Tyler B M, Thakor N V, Pathak A P 2019 Nat. Commun. 10 99Google Scholar
[19] Sekiguchi K J, Shekhtmeyster P, Merten K, Arena A, Cook D, Hoffman E, Ngo A, Nimmerjahn A 2016 Nat. Commun. 7 11450Google Scholar
[20] Zhou Y L, Li X 2017 Opt. Rev. 24 398Google Scholar
[21] Glaser A K, Chen Y, Yin C B, Wei L P, Barner L A, Reder N P, Liu J T C 2018 Sci. Rep. 8 13878Google Scholar
[22] Wu Y Q, Xu X, Wang J X, Zhang X, Shi G H 2021 Acta Opt. Sin. 41 2018001Google Scholar
[23] 王海龙 2017 博士学位论文 (吉林: 吉林大学)
Wang H L 2017 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)
[24] O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180Google Scholar
[25] Lin Y, Gao C, Gritsenko D, Zhou R, Xu J 2018 Microfluid. Nanofluid. 22 97Google Scholar
[26] Casamenti E, Pollonghini S, Bellouard Y 2021 Opt. Express 29 35054Google Scholar
[27] Anders K E, Stefan B, Tung-Cheng W, Ralf H, Thomas Hr, Mark S 2021 ACS Photon. 8 1944Google Scholar
-
图 3 共聚焦表征 (a) 100 kHz; (b) 200 kHz; (c) 300 kHz; (d) 400 kHz; (e) 500 kHz 等重复频率下不同激光功率刻蚀的微沟槽深度; (f)刻蚀微沟槽显微镜图像
Figure 3. Confocal characterization (a) 100 kHz; (b) 200 kHz; (c) 300 kHz; (d) 400 kHz; (e) 500 kHz, etc repetition frequencies, etching micro groove depth with different laser power; (f) Microscopic images of etched grooves.
-
[1] Vysniauskas A, Lopez-Duarte I, Duchemin N, Vu T T, Wu Y L, Budynina E M, Volkova Y A, Cabrera E P, Ramirez-Ornelas D E, Kuimova M K 2017 Phys. Chem. Chem. Phys. 19 25252Google Scholar
[2] Witte S, Negrean A, Lodder J C, de Kock C P J, Silva G T, Mansvelder H D, Groot M L 2011 Proc. Natl. Acad. Sci. U. S. A. 108 5970Google Scholar
[3] Kuimova M K 2012 Phys. Chem. Chem. Phys. 14 12671Google Scholar
[4] Yoon S, Kim M, Jang M, Choi Y, Choi W, Kang S, Choi W 2020 Nat. Rev. Phys. 2 141Google Scholar
[5] Errico C, Pierre J, Pezet S, Desailly Y, Lenkei Z, Couture O, Tanter M 2015 Nature 527 499Google Scholar
[6] Querard J, Zhang R K, Kelemen Z, Plamont M A, Xie X J, Chouket R, Roemgens I, Korepina Y, Albright S, Ipendey E, Volovitch M, Sladitschek H L, Neveu P, Gissot L, Gautier A, Faure J D, Croquette V, Le Saux T, Jullien L 2017 Nat. Commun. 8 2173Google Scholar
[7] Wang L, Pitter M C, Somekh M G 2010 Appl. Opt. 49 6160Google Scholar
[8] Schneckenburger H, Richter V 2021 Photonics 8 275Google Scholar
[9] Moo E K, Abusara Z, Abu Osman N A, Pingguan-Murphy B, Herzog W 2013 J. Biomech. 46 2024Google Scholar
[10] Nishiyama H, Suga M, Ogura T, Maruyama Y, Koizumi M, Mio K, Kitamura S, Sato C 2010 J. Struct. Biol. 169 438Google Scholar
[11] Kyrish M, Dobbs J, Jain S, Wang X, Yu D H, Richards-Kortum R, Tkaczyk T S 2013 J. Biomed. Opt. 18 096003Google Scholar
[12] Lanzano LHernandez I C, Castello M, Gratton E, Diaspro A, Vicidomini G 2015 Nat. Commun. 6 6701Google Scholar
[13] 王美昌, 于斌, 张炜, 林丹樱, 屈军乐 2020 69 238701Google Scholar
Wang M C, Yu B, Zhang W, Lin D Y, Qu J L 2020 Acta Phys. Sin. 69 238701Google Scholar
[14] Chen S Y, Wang Z C, Zhang D, Wang A M, Chen L Y, Cheng H P, Wu R L 2020 Neurosci. Bull. 36 1182Google Scholar
[15] Chatterjee K, Pratiwi F W, Wu F C M, Chen P L, Chen B C 2018 Appl. Spectrosc. 72 1137Google Scholar
[16] Santi P A 2011 J. Histochem. Cytochem. 59 129Google Scholar
[17] Maizel A, von Wangenheim D, Federici F, Haseloff J, Stelzer E H K 2011 Plant J. 68 377Google Scholar
[18] Senarathna J, Yu H, Deng C, Zou A L, Issa J B, Hadjiabadi D H, Gil S, Wang Q H, Tyler B M, Thakor N V, Pathak A P 2019 Nat. Commun. 10 99Google Scholar
[19] Sekiguchi K J, Shekhtmeyster P, Merten K, Arena A, Cook D, Hoffman E, Ngo A, Nimmerjahn A 2016 Nat. Commun. 7 11450Google Scholar
[20] Zhou Y L, Li X 2017 Opt. Rev. 24 398Google Scholar
[21] Glaser A K, Chen Y, Yin C B, Wei L P, Barner L A, Reder N P, Liu J T C 2018 Sci. Rep. 8 13878Google Scholar
[22] Wu Y Q, Xu X, Wang J X, Zhang X, Shi G H 2021 Acta Opt. Sin. 41 2018001Google Scholar
[23] 王海龙 2017 博士学位论文 (吉林: 吉林大学)
Wang H L 2017 Ph. D. Dissertation (Jilin: Jilin University) (in Chinese)
[24] O'Carroll D, Lieberwirth I, Redmond G 2007 Nat. Nanotechnol. 2 180Google Scholar
[25] Lin Y, Gao C, Gritsenko D, Zhou R, Xu J 2018 Microfluid. Nanofluid. 22 97Google Scholar
[26] Casamenti E, Pollonghini S, Bellouard Y 2021 Opt. Express 29 35054Google Scholar
[27] Anders K E, Stefan B, Tung-Cheng W, Ralf H, Thomas Hr, Mark S 2021 ACS Photon. 8 1944Google Scholar
Catalog
Metrics
- Abstract views: 3478
- PDF Downloads: 74
- Cited By: 0