搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用全息法在偶氮聚合物薄膜中记录涡旋光场

陈天宇 王长顺 潘雨佳 孙丽丽

引用本文:
Citation:

利用全息法在偶氮聚合物薄膜中记录涡旋光场

陈天宇, 王长顺, 潘雨佳, 孙丽丽

Recording optical vortices in azo polymer films by applying holographic method

Chen Tian-Yu, Wang Chang-Shun, Pan Yu-Jia, Sun Li-Li
PDF
HTML
导出引用
  • 利用全息技术在偶氮聚合物薄膜中记录了拓扑荷数q = –1, 1, 2, 4的涡旋光场, 并将记录的原始叉形光栅与计算全息光栅进行对比, 对不同拓扑荷数涡旋光的记录速率和偶氮材料的可重复擦写性能进行了测试; 记录完成后, 将复现涡旋光与高斯光束干涉, 并与原始涡旋光和原始叉形光栅对比, 分析了记录质量. 实验结果表明:高阶涡旋光场的全息叉形光栅会在记录过程中发生劈裂, 轻微劈裂的涡旋光束仍维持一个稳定的环状结构; 全息记录过程中不同拓扑荷数的涡旋光束记录速率较为统一, 偶氮材料可经过上百次的擦写而不出现疲劳; 再现涡旋光与原始涡旋光在光强分布结构上保持高度一致, 再现涡旋光的干涉条纹与原始涡旋全息光栅保持高度一致, 涡旋光及其携带的拓扑荷信息可被有效记录和读取.
    In this paper the optical vortices with topological charge q = –1, 1, 2, 4 are recorded in azo polymer films by using holographic technology. The forked holographic gratings formed by the Gaussian beam and optical vortex beam are recorded in the sample films, the original forked holographic grating and the recording rate are analyzed. The vortex beam is reconstructed by illuminating the sample film with a reference beam, and the recording quality is analyzed. Also the erasability and durability of the sample are tested. The experimental results show that the recording rates of vortex beams with different topological charges are relatively uniform, which means that the optical vortices with different topological charges can be recorded at the same speed. The forked holographic grating of the high-order optical vortex splits in the recording process due to the disturbances, such as anisotropic nonlinear light, atmospheric turbulence, and background light field. However, the split vortex beam still maintains a stable ring structure. The reconstructed optical vortex and the original optical vortex are highly consistent in morphology, and the interference fringes of the reconstructed optical vortices are highly consistent with the original vortex holographic gratings, indicating that the topological charge information in the optical vortices can be effectively recorded and read out. The recorded information can be erased by heating the sample to about 97 ℃, and new information can be re-recorded after cooling. There appears no fatigue in the sample after the information has been erased 100 times and good durability is still retained. Optical vortices theoretically have infinite states of topological charges, based on which great success is achieved in optical communication and information encoding. Therefore, storing and reading information of topological charges in optical vortices may have potential applications in optical information storage.
      通信作者: 陈天宇, tianyuchen@sjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574211)资助的课题
      Corresponding author: Chen Tian-Yu, tianyuchen@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11574211)
    [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar

    [3]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar

    [4]

    Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401Google Scholar

    [5]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar

    [6]

    Schine N, Ryou A, Gromov A, Sommer A, Simon J 2016 Nature 534 671Google Scholar

    [7]

    Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T 2010 Opt. Express 18 2144Google Scholar

    [8]

    Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N, Morita R 2010 Opt. Express 18 17967Google Scholar

    [9]

    Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar

    [10]

    Toyoda K, Takahashi F, Takizawa S, Tokizane Y, Miyamoto K, Morita R, Omatsu T 2013 Phys. Rev. Lett. 110 143603Google Scholar

    [11]

    Watanabe T, Igasaki Y, Fukuchi N, Sakai M, Ishiuchi S, Fujii M, Omatsu T, Yamamoto K, Iketaki Y 2004 Opt. Eng. 43 1136Google Scholar

    [12]

    Bretschneider S, Eggeling C, Hell S W 2007 Phys. Rev. Lett. 98 218103Google Scholar

    [13]

    Gahagan K T, Swartzlander G A 1996 Opt. Lett. 21 827Google Scholar

    [14]

    Padgett M, Bowman R 2011 Nat. Photonics 5 343Google Scholar

    [15]

    Padgett M J 2017 Opt. Express 25 11265Google Scholar

    [16]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282Google Scholar

    [17]

    Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar

    [18]

    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar

    [19]

    Ren Y, Wang Z, Liao P, Li L, Xie G, Huang H, Zhao Z, Yan Y, Ahmed N, Willner A, Lavery M P, Ashrafi N, Ashrafi S, Bock R, Tur M, Djordjevic I B, Neifeld M A, Willner A E 2016 Opt. Lett. 41 622Google Scholar

    [20]

    Eznaveh Z S, Zacarias J C A, Lopez J E A, Shi K, Milione G, Jung Y, Thomsen B C, Richardson D J, Fontaine N, Leon-Saval S G, Correa R A 2018 Opt. Express 26 30042Google Scholar

    [21]

    Lugiato L A, Oldano C, Narducci L M 1988 Opt. Soc. Am. B 5 879Google Scholar

    [22]

    Brambilla M, Battipede F, Lugiato L A, Penna V, Prati F, Tamm C, Weiss C O 1991 Phys. Rev. A 43 5090Google Scholar

    [23]

    Oemrawsingh S S R, Ma X, Voigtand D, Aiello A, Eliel E R, Hooft G W, Woerdman J P 2005 Phys. Rev. Lett. 95 240501Google Scholar

    [24]

    Karimi E, Schulz S A, Leon I D, Qassim H, Upham J, Boyd R W 2014 Light Sci. Appl. 3 e167Google Scholar

    [25]

    Heckenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [26]

    Leblanc A, Denoeud A, Chopineau L, Mennerat G, Martin P, Quéré F 2017 Nat. Phys. 13 440Google Scholar

    [27]

    Ambrosio A, Marrucci L, Borbone F, Roviello A, Maddalena P 2012 Nat. Commun. 3 989Google Scholar

    [28]

    Cook L J, Mazilu D A, Mazilu I, Simpson B M, Schwen E M, Kim V O, Seredinski A M 2014 Phys. Rev. E 89 062411Google Scholar

    [29]

    Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108Google Scholar

    [30]

    Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130Google Scholar

    [31]

    Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195Google Scholar

    [32]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10Google Scholar

    [33]

    Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295Google Scholar

    [34]

    Stoyanov L, Topuzoski S, Stefanov I, Janicijevic L, Dreischuh A 2015 Opt. Commun. 350 301Google Scholar

  • 图 1  偶氮苯聚合物薄膜的吸收光谱, 插图为样品AFM图像, 封装后的样品结构和化合物的化学结构

    Fig. 1.  Absorption spectra of the azo-benzene polymer film. Inset: AFM image and structure of the sample, and chemical structure of the compound.

    图 2  涡旋全息记录实验装置. W1和W2, 记录光束; L1, 焦距为7.5 cm的凸透镜; L2, 焦距为20 cm的凸透镜; P, 偏振片; BS1, BS2, 分束器; A1, A2, A3, A4, 衰减片; M, M1, M2, M3, 反光镜; SLM, 空间光调制器

    Fig. 2.  Experimental setup for vortex holographic recording. W1 and W2, recording waves. L1, lens with a focal length of 7.5 cm; L2, lens with a focal length of 20 cm; P, polarizer; BS1, BS2, beam splitter; A1, A2, A3, A4, attenuator; M, M1, M2, M3, mirror; SLM, spatial light modulator.

    图 3  用以产生不同拓扑荷数涡旋光束的相位图像配置文件 (a) q = –1; (b) q = 1; (c) q = 2; (d) q = 4

    Fig. 3.  Phase profiles displayed on the SLM to generate vortex beams with different topological charges q: (a) q = –1; (b) q = 1; (c) q = 2; (d) q = 4.

    图 4  计算全息光栅与实验中记录的涡旋全息光栅的对比 (a)−(d)分别为q = –1, 1, 2, 4的计算全息光栅; (e)−(h)分别为实验中记录的q = –1, 1, 2, 4全息光栅

    Fig. 4.  Comparison between CGH gratings and vortex holographic gratings: (a)−(d) the CGH gratings of q = –1, 1, 2, 4; (e)−(h) vortex holographic gratings of q = –1, 1, 2, 4 recorded in experiments.

    图 5  +1级衍射光斑强度的探测

    Fig. 5.  Detection of the intensity of the first order diffraction spot.

    图 6  (a)衍射光斑强度随时间的变化; (b)涡旋全息光栅的衍射效率

    Fig. 6.  (a) Curves of the intensity variation of diffraction spots; (b) diffraction efficiency of optical vortex holographic grating.

    图 7  高斯光束照射不同拓扑荷数涡旋光记录的全息光栅得到的衍射图样 (a) q = –1; (b) q = 1; (c) q = 2; (d) q = 4

    Fig. 7.  Diffraction images generated by using reference beam to illuminate samples with holograms recorded different topological charges: (a) q = –1; (b) q = 1; (c) q = 2; (d) q = 4.

    图 8  (a)−(d)再现涡旋光束; (e)−(h)原始涡旋光束; (i)−(l)再现涡旋光束与高斯光束的干涉图样

    Fig. 8.  (a)−(d) Reconstructed optical vortex beams; (e)−(h) original optical vortex beam; (i)−(l) the interference pattern of reconstructed optical vortex beam and Gaussian beam.

    Baidu
  • [1]

    Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar

    [2]

    Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313Google Scholar

    [3]

    Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002 Phys. Rev. Lett. 88 257901Google Scholar

    [4]

    Vaziri A, Weihs G, Zeilinger A 2002 Phys. Rev. Lett. 89 240401Google Scholar

    [5]

    Ding D S, Zhang W, Zhou Z Y, Shi S, Xiang G Y, Wang X S, Jiang Y K, Shi B S, Guo G C 2015 Phys. Rev. Lett. 114 050502Google Scholar

    [6]

    Schine N, Ryou A, Gromov A, Sommer A, Simon J 2016 Nature 534 671Google Scholar

    [7]

    Hamazaki J, Morita R, Chujo K, Kobayashi Y, Tanda S, Omatsu T 2010 Opt. Express 18 2144Google Scholar

    [8]

    Omatsu T, Chujo K, Miyamoto K, Okida M, Nakamura K, Aoki N, Morita R 2010 Opt. Express 18 17967Google Scholar

    [9]

    Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar

    [10]

    Toyoda K, Takahashi F, Takizawa S, Tokizane Y, Miyamoto K, Morita R, Omatsu T 2013 Phys. Rev. Lett. 110 143603Google Scholar

    [11]

    Watanabe T, Igasaki Y, Fukuchi N, Sakai M, Ishiuchi S, Fujii M, Omatsu T, Yamamoto K, Iketaki Y 2004 Opt. Eng. 43 1136Google Scholar

    [12]

    Bretschneider S, Eggeling C, Hell S W 2007 Phys. Rev. Lett. 98 218103Google Scholar

    [13]

    Gahagan K T, Swartzlander G A 1996 Opt. Lett. 21 827Google Scholar

    [14]

    Padgett M, Bowman R 2011 Nat. Photonics 5 343Google Scholar

    [15]

    Padgett M J 2017 Opt. Express 25 11265Google Scholar

    [16]

    Barreiro J T, Wei T C, Kwiat P G 2008 Nat. Phys. 4 282Google Scholar

    [17]

    Nicolas A, Veissier L, Giner L, Giacobino E, Maxein D, Laurat J 2014 Nat. Photonics 8 234Google Scholar

    [18]

    Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch AF, Ashrafi N, Ashrafi S 2015 Adv. Opt. Photonics 7 66Google Scholar

    [19]

    Ren Y, Wang Z, Liao P, Li L, Xie G, Huang H, Zhao Z, Yan Y, Ahmed N, Willner A, Lavery M P, Ashrafi N, Ashrafi S, Bock R, Tur M, Djordjevic I B, Neifeld M A, Willner A E 2016 Opt. Lett. 41 622Google Scholar

    [20]

    Eznaveh Z S, Zacarias J C A, Lopez J E A, Shi K, Milione G, Jung Y, Thomsen B C, Richardson D J, Fontaine N, Leon-Saval S G, Correa R A 2018 Opt. Express 26 30042Google Scholar

    [21]

    Lugiato L A, Oldano C, Narducci L M 1988 Opt. Soc. Am. B 5 879Google Scholar

    [22]

    Brambilla M, Battipede F, Lugiato L A, Penna V, Prati F, Tamm C, Weiss C O 1991 Phys. Rev. A 43 5090Google Scholar

    [23]

    Oemrawsingh S S R, Ma X, Voigtand D, Aiello A, Eliel E R, Hooft G W, Woerdman J P 2005 Phys. Rev. Lett. 95 240501Google Scholar

    [24]

    Karimi E, Schulz S A, Leon I D, Qassim H, Upham J, Boyd R W 2014 Light Sci. Appl. 3 e167Google Scholar

    [25]

    Heckenberg N R, McDuff R, Smith C P, White A G 1992 Opt. Lett. 17 221Google Scholar

    [26]

    Leblanc A, Denoeud A, Chopineau L, Mennerat G, Martin P, Quéré F 2017 Nat. Phys. 13 440Google Scholar

    [27]

    Ambrosio A, Marrucci L, Borbone F, Roviello A, Maddalena P 2012 Nat. Commun. 3 989Google Scholar

    [28]

    Cook L J, Mazilu D A, Mazilu I, Simpson B M, Schwen E M, Kim V O, Seredinski A M 2014 Phys. Rev. E 89 062411Google Scholar

    [29]

    Mamaev A V, Saffman M, Zozulya A 1997 Phys. Rev. Lett. 78 2108Google Scholar

    [30]

    Gan X, Zhang P, Liu S, Zheng Y, Zhao J, Chen Z G 2009 Opt. Express 17 23130Google Scholar

    [31]

    Malik M, O’Sullivan M, Rodenburg B, Mirhosseini M, Leach J, Lavery M P, Padgett M J, Boyd R W 2012 Opt. Express 20 13195Google Scholar

    [32]

    Cui Q, Li M, Yu Z 2014 Opt. Commun. 329 10Google Scholar

    [33]

    Reddy S G, Prabhakar S, Aadhi A, Banerji J, Singh R P 2014 JOSA A 31 1295Google Scholar

    [34]

    Stoyanov L, Topuzoski S, Stefanov I, Janicijevic L, Dreischuh A 2015 Opt. Commun. 350 301Google Scholar

  • [1] 连天虹, 窦逸群, 周磊, 刘芸, 寇科, 焦明星. 热效应作用下高功率薄片涡旋激光器的模场结构.  , 2024, 73(16): 164206. doi: 10.7498/aps.73.20240757
    [2] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [3] 张鸿宾, 陈玲, 张保成. 类比Bañados-Teitelboim-Zanelli黑洞的辐射屏蔽.  , 2023, 72(6): 060401. doi: 10.7498/aps.72.20222296
    [4] 杨鑫宇, 叶华朋, 李佩芸, 廖鹤麟, 袁冬, 周国富. 小型化涡旋光模式解复用器: 原理、制备及应用.  , 2023, 72(20): 204207. doi: 10.7498/aps.72.20231521
    [5] 朱雪松, 刘星雨, 张岩. 涡旋光束在双拉盖尔-高斯旋转腔中的非互易传输.  , 2022, 71(15): 150701. doi: 10.7498/aps.71.20220191
    [6] 梁德山, 黄厚兵, 赵亚楠, 柳祝红, 王浩宇, 马星桥. 拓扑荷在圆盘状向列相液晶薄膜中的尺寸效应.  , 2021, 70(4): 044202. doi: 10.7498/aps.70.20201623
    [7] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法.  , 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [8] 魏薇, 张志明, 唐莉勤, 丁镭, 范万德, 李乙钢. 六重准晶涡旋光光子晶体光纤特性.  , 2019, 68(11): 114209. doi: 10.7498/aps.68.20190381
    [9] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究.  , 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [10] 张羚翔, 魏薇, 张志明, 廖文英, 杨振国, 范万德, 李乙钢. 环形光子晶体光纤中涡旋光的传输特性研究.  , 2017, 66(1): 014205. doi: 10.7498/aps.66.014205
    [11] 张昊, 常琛亮, 夏军. 单环多段光强分布检测光学涡旋拓扑荷值.  , 2016, 65(6): 064101. doi: 10.7498/aps.65.064101
    [12] 赵应春, 张秀英, 袁操今, 聂守平, 朱竹青, 王林, 李杨, 贡丽萍, 冯少彤. 基于涡旋光照明的暗场数字全息显微方法研究.  , 2014, 63(22): 224202. doi: 10.7498/aps.63.224202
    [13] 赵继芝, 江月松, 欧军, 叶继海. 球形粒子在聚焦拉盖尔-高斯光束中的散射特性研究.  , 2012, 61(6): 064202. doi: 10.7498/aps.61.064202
    [14] 谢茹胜, 赵有源. 新型掺偶氮苯聚合物的取向增强及全息存储.  , 2011, 60(5): 054202. doi: 10.7498/aps.60.054202
    [15] 冯博, 甘雪涛, 刘圣, 赵建林. 光波场中多边位错向螺旋位错的转化.  , 2011, 60(9): 094203. doi: 10.7498/aps.60.094203
    [16] 欧军, 江月松, 黎芳, 刘丽. 拉盖尔-高斯光束在界面反射和折射的质心偏移特性研究.  , 2011, 60(11): 114203. doi: 10.7498/aps.60.114203
    [17] 李俊昌, 彭祖杰, Tankam Patrice, Picart Pascal. 散射光彩色数字全息光学系统及波面重建算法研究.  , 2010, 59(7): 4646-4655. doi: 10.7498/aps.59.4646
    [18] 田勇, 潘煦, 王长顺, 张小强, 曾艺. 偶氮液晶聚合物薄膜的二维偏振全息记录.  , 2009, 58(10): 6979-6984. doi: 10.7498/aps.58.6979
    [19] 梁检初, 王晓生, 罗锻斌, 佘卫龙, 吴水珠, 曾 钫, 唐 天, 姚胜兰. 掺杂偶氮苯聚合物光致异构Z扫描测量及其理论解释.  , 2004, 53(10): 3596-3600. doi: 10.7498/aps.53.3596
    [20] 梁忠诚, 明海, 王沛, 章江英, 龙云泽, 夏勇, 谢建平, 张其锦. 偶氮液晶聚合物中的非线性光致双折射.  , 2001, 50(12): 2482-2486. doi: 10.7498/aps.50.2482
计量
  • 文章访问数:  5378
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-08
  • 修回日期:  2020-10-06
  • 上网日期:  2021-02-25
  • 刊出日期:  2021-03-05

/

返回文章
返回
Baidu
map