搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚合物衬底上微纳物体的激光捕获及操控

尹越 窦琳 沈天赐 刘家彤 谷付星

引用本文:
Citation:

聚合物衬底上微纳物体的激光捕获及操控

尹越, 窦琳, 沈天赐, 刘家彤, 谷付星

Laser trapping and manipulation of micro/nano-objects on polymer substrates

YIN Yue, DOU Lin, SHEN Tian-Ci, LIU Jia-Tong, GU Fu-Xing
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 聚合物衬底克服了刚性平面衬底在空间形变场景下的局限,并能结合光刻技术制备复杂三维异形空间结构.光热冲镊技术实现了固体界面上对微纳物体的捕获和操控,将该技术应用在聚合物衬底上可开发新的应用场景需求.本文以常用的聚甲基丙烯酸甲酯和负性光刻胶作为聚合物衬底,通过溶胶-凝胶法在其上制备SiO2纳米薄膜,能有效减轻光热冲击效应引起的热损伤,从而实现微纳物体的激光捕获及操控.实验表明,在常用激光操控功率条件下,当SiO2纳米薄膜厚度大于110 nm时,能够有效防止聚合物衬底因光热效应引起软化、膨胀和表面破坏.理论计算也表明,纳米薄膜能至少降低聚合物表面温度111ºC,并使其产生最高温度的时间滞后13.2 ns. 本文使用的纳米薄膜制备技术具有常温、大面积、低粗糙度且厚度均一的优点,能普遍适用于柔性聚合物衬底以及异形结构.本论文实验结果拓展了激光捕获物体的环境媒介,为其在微纳操控、微纳米机器人和微纳光机电器件等领域的应用提供新的可能性.
    Polymer substrates overcome the limitations of rigid planar substrates in spatial deformation scenarios and can be combined with photolithography to fabricate complex, three-dimensional irregular polymer structures. Photothermal-shock tweezer is a laser trapping technique based on the photothermal shock effect. Photothermal-shock tweezer leverages pulsed laser induced transient photothermal shock to generate micro-newton-scale thermomechanical strain gradients force, enabling the capture and manipulation of micro/nano-objects at solid interfaces. Integrating this technique with polymer substrates can address the demands of new application scenarios.In this work, we use commonly employed polymethyl methacrylate (PMMA) and negative photoresist (SU-8) as polymer substrates, on which SiO2 nanofilms are fabricated using the sol-gel method. This approach effectively mitigates thermal damage caused by photothermal shock effects, enabling laser trapping and manipulation of micro/nano-objects.
    SiO2 nanofilms, characterized by low thermal conductivity, effectively inhibit heat transfer. The nanofilm fabrication technique utilized in this study enables the synthesis of large-area SiO2 nanofilms with large-area coverage, low surface roughness (Rq ~ 320 pm) and uniform thickness, making it broadly applicable to flexible polymer substrates and irregular structures. Direct contact between the polymer layer and micro/nano-objects during photothermal shock tweezers manipulation can induce irreversible substrate degradation due to transient photothermal shock effects. Experimental results demonstrate that depositing an SiO2 nanofilm thicker than 110 nm on the polymer substrate significantly enhances thermal insulation and protection, effectively mitigating laser-induced damage under typical optical manipulation conditions.
    Additionally, by analyzing the temperature field distribution of the gold nanosheet, PMMA substrate, and SiO2 nanofilm during a single photothermal shock trapping of a gold nanosheet, we found that the SiO2 nanofilm can reduce the PMMA surface temperature by at least 111 ºC and delay the time for PMMA to reach its peak temperature by 13.2 ns compared to the peak temperature time of the gold nanosheet. The experimental results expand the environmental media for laser trapping of objects, offering new possibilities for applications in micro/nano-manipulation, micro/nanorobotics, and micro/nano-optoelectronic devices.
  • [1]

    Li N, Zhu X M, Li W Q, Fu Z H, Hu M Z, Hu H Z 2019 Front. Inform. Technol.Electron. Eng. 20 655

    [2]

    Wang H C, Li Z P 2019 Acta Phys. Sin. 68 25 (in Chinese) [汪涵聪,李志鹏 2019 68 25]

    [3]

    Han X, Chen X L, Xiong W, Kuang T F, Chen Z H, Peng M, Xiao G Z, Yang K Y, Luo H 2021 Chinese Journal of Lasers 48 187 (in Chinese) [韩翔, 陈鑫麟, 熊威, 邝腾芳, 陈志洁, 彭妙, 肖光宗, 杨开勇, 罗晖 2021中国激光 48 187]

    [4]

    Gieseler J, Gomez-Solano J R, Magazzù A, Pérez Castillo I, Pérez García L, Gironella-Torrent M, Viader-Godoy X, Ritort F, Pesce G, Arzola A V, Volke-Sepúlveda K, Volpe G 2021 Adv. Opt. Photonics. 13 74

    [5]

    Yu S L, Lu J S, Ginis V, Kheifets S, Lim S W D, Qiu M, Gu T, Hu J J, Capasso F 2021 Optica 8 409

    [6]

    Xu X H, Gao W Y, Li T Y, Shao T H, Li X Y, Zhou Y, Gao G Z, Wang G X, Yan S H, Wang S M, Yao B L 2024 Acta Optica Sinica 44 9 (in Chinese)[徐孝浩, 高文禹, 李添悦, 邵天骅, 李星仪, 周源, 高歌泽, 王国玺, 严绍辉, 王漱明, 姚保利 2024 光学学报 44 9]

    [7]

    Yang J H, Deng R P, Wang X Y, Zhang Y Q, Yuan X C, Min C J 2024 Chinese Journal of Lasers 51 62 (in Chinese) [杨嘉豪, 邓如平, 汪先友, 张聿全, 袁小聪, 闵长俊 2024 中国激光51 62]

    [8]

    Jia Q, Lyu W, Yan W, Tang W, Lu J, Qiu M 2023 Photonics Insights 2 R05-1

    [9]

    Liu H J, Liu Y F, Gu F X 2024 Acta Phys. Sin. 73 199 (in Chinese) [刘鸿江, 刘逸飞, 谷付星 2024 73 199]

    [10]

    Gu Z Q, Zhu R L, Shen T C, Dou L, Liu H J, Liu Y F, Liu X, Liu J, Zhuang S L, Gu F X 2023 Nat. Commun. 14 7663

    [11]

    Zhang Y Z, Liu H J, Zhu R L, Liu Y F, Gu F X 2024 Chinese Journal of Lasers 51 219 (in Chinese) [张尹峥, 刘鸿江, 朱润琳,刘逸飞,谷付星 2024中国激光 51 219]

    [12]

    Shi Z X, Shen T C, Dou L, Gu Z Q, Zhu R L, Dong X Y, Gu F X 2024 Laser. Photonics. Rev. 18 2400384

    [13]

    Zhu R L, Shen T C, Gu Z Q, Shi Z X, Dou L, Liu Y F, Zhuang S L, Gu F X 2024 ACS. Nano 18 23232

    [14]

    Gu Z Q, Dou L, Linghu S Y, Zhu R L, Gu F X 2024 Phys. Rev. Appl. 22 054066

    [15]

    Song J K, Kim M S, Yoo S, Koo J H, Kim D H 2021 Nano. Res. 14 2919

    [16]

    Tan W S, Zhou J Z, Huang S, Sheng J, Xu J L 2016 Infrared and Laser Engineering

    [17]

    45 67 (in Chinese) [谭文胜, 周建忠, 黄舒, 盛杰, 徐家乐 2016 红外与激光工程 45 67]

    [18]

    Tang F, Pan D, Yu F, Huang K J, Hu Y L, Wu D, Li J W 2024 Chinese Journal of Lasers 51 170 (in Chinese) [唐枫, 潘登, 俞飞, 黄锟境, 胡衍雷, 吴东, 李家文 2024 中国激光 51 170]

    [19]

    Bian P, Hu Z Y, An R, Tian Z N, Liu X Q, Chen Q D 2024 Laser. Photonics. Rev. 18 2300957

    [20]

    Wang Y X, Liao C R, Zou M Q, Bao W J, Liu D J, Zhang L, Wang Y P 2024 Chinese Journal of Lasers 51 317 (in Chinese) [王裕鑫, 廖常锐, 邹梦强, 包维佳, 刘德军, 张立, 王义平 2024 中国激光 51 317]

    [21]

    Lee J, Kim J, Lee B J, Lee J, Lee H W, Hong M H, Park H H, Shim D Il, Cho H H, Kwon K H 2018 Thin Solid Films 660 715

    [22]

    Tang T T, Wang Z H 2010 The Science of Micro- and Nano-fabrication (Beijing: Publishing House of Electronics Industry) p312 (in Chinese) [唐天同,王兆宏 2010微纳加工科学原理(北京: 电子工业出版社) 第312页]

    [23]

    Xing A, Gao Y, Yin J G, Ren G J, Liu H T, Ma M J 2010 Appl. Surf. Sci. 256 6133

    [24]

    Kim S H, Hwang G S, Koo D, Seo D H, Kwon Y P, Lee H, Park H, Jeon E C, Kim J Y 2022 Nano. Res. 15 7476

    [25]

    Li T, KINGSLEY-SMITH J J, Hu Y, Xu X, Yan S, Wang S, Yao B, Wang Z, Zhu S 2023 Opt. Lett. 48 255

    [26]

    Li T, Xu H, Panmai M, Shao T, Gao G, Xu F, Hu G, Wang S, Wang Z, Zhu S 2024 Ultrafast Sci. 4 0074

    [27]

    Li T, Liu M, Hou J, Yang X, Wang S, Wang S, Zhu S, Tsai D P, Wang Z 2024 Chip 3 100109

    [28]

    Guo J K, Sandaruwan W D N, Li J W, Ling J Z, Yuan Y, Liu X, Li Q, Wang X R 2024 Micromachines 15 337

    [29]

    Liang Z S, Zhang B L, Yi S H, Sun K Y, Pei G H, Shang Y, Liu X Y, Ren S X, Liu P F, Zhao J J 2024 Nano Mater. Sci. org/10.1016/ j.nanoms. 2024.05.013

    [30]

    Cheng Q L, Lu X Q, Tai Y H, Luo T T, Yang R H 2024 ACS Biomater. Sci. Eng. 10 5562

    [31]

    Hou J Y, Liu H T, Huang L T, Wu S B, Zhang Z L 2024 Chem. Eng. J. 498 155135

  • [1] 张先骏. 冷冻光学显微镜技术在光合作用研究中的发展与应用.  , doi: 10.7498/aps.73.20241072
    [2] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展.  , doi: 10.7498/aps.69.20200653
    [3] 梁婉婷, 候峙云, 周桂耀, 夏长明, 张卫, 韦乐峰, 刘建涛. 基于溶胶-凝胶和激光熔融法制备掺镱石英玻璃.  , doi: 10.7498/aps.65.178107
    [4] 周攀钒, 袁欢, 徐小楠, 鹿轶红, 徐明. 过渡金属与F共掺杂ZnO薄膜结构及磁、光特性.  , doi: 10.7498/aps.64.247503
    [5] 杨虹, 齐伟华, 纪登辉, 尚志丰, 张晓云, 徐静, 郎莉莉, 唐贵德. 钙钛矿锰氧化物La2/3Sr1/3FexMn1-xO3的结构与磁性研究.  , doi: 10.7498/aps.63.087503
    [6] 张丽, 徐明, 余飞, 袁欢, 马涛. Fe, Co共掺杂ZnO薄膜结构及发光特性研究.  , doi: 10.7498/aps.62.027501
    [7] 曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周传仓. Nb/SnO2复合薄膜的制备、结构及光电性能.  , doi: 10.7498/aps.60.038203
    [8] 张嬛, 刘发民, 丁芃, 钟文武, 周传仓. BiFeO3纳米粉的制备、结构表征及铁磁特性.  , doi: 10.7498/aps.59.2078
    [9] 王兴军, 董斌, 周治平. Er硅酸盐化合物薄膜的相转变和光致发光特性研究.  , doi: 10.7498/aps.59.3554
    [10] 刘吉地, 王育华. Mg2+掺杂Zn2SiO4:Mn2+的溶胶-凝胶法合成及真空紫外发光特性研究.  , doi: 10.7498/aps.59.3558
    [11] 胡林华, 戴俊, 刘伟庆, 王孔嘉, 戴松元. 锐钛矿相纳米TiO2晶体生长动力学及生长过程控制.  , doi: 10.7498/aps.58.1115
    [12] 刘妍妍, 刘发民, 石 霞, 丁 芃, 周传仓. 钙钛矿型纳米BaFeO3的制备、结构表征及铁磁性研究.  , doi: 10.7498/aps.57.7274
    [13] 向卫东, 唐珊珊, 张希艳, 杨昕宇, 张延华. 溶胶-凝胶法制备PbS量子点玻璃的研究.  , doi: 10.7498/aps.57.4607
    [14] 方 洪, 孙 慧, 朱 骏, 毛翔宇, 陈小兵. 溶胶-凝胶法制备Sr2Bi4Ti5O18薄膜及其铁电性能研究.  , doi: 10.7498/aps.55.3086
    [15] 胡林华, 戴松元, 王孔嘉. 纳米TiO2多孔膜的微结构对染料敏化纳米薄膜太阳电池性能的影响.  , doi: 10.7498/aps.54.1914
    [16] 贾建峰, 黄 凯, 潘清涛, 贺德衍. 溶胶-凝胶法制备(Ba0.7Sr0.3)TiO3/LaNiO3异质薄膜及其结构和介电性质研究.  , doi: 10.7498/aps.54.4406
    [17] 杜丕一, 隋 帅, 翁文剑, 韩高荣, 汪建勋. Mg掺杂PST薄膜的溶胶-凝胶法制备及晶相形成研究.  , doi: 10.7498/aps.54.5411
    [18] 王 强, 沈明荣, 侯 芳, 甘肇强. 烘烤温度对溶胶-凝胶法制备镧掺杂钛酸铋薄膜结构与铁电性质的影响.  , doi: 10.7498/aps.53.2373
    [19] 徐润, 沈明荣, 葛水兵. 溶胶-凝胶法制备BaTiO3/SrTiO3多层膜的介电增强效应.  , doi: 10.7498/aps.51.1139
    [20] 杨合情, 王喧, 张邦劳, 李永放, 张良莹, 姚熹. 溶胶-凝胶法制备的GeO2-SiO2凝胶玻璃的红光发射.  , doi: 10.7498/aps.51.178
计量
  • 文章访问数:  85
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-25

/

返回文章
返回
Baidu
map