Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

New rovibrational subbands of Ar-D2O complex in the D2O bending mode region

Li Xiang Liu Yun Zhu Tian-Xin Duan Chuan-Xi

Citation:

New rovibrational subbands of Ar-D2O complex in the D2O bending mode region

Li Xiang, Liu Yun, Zhu Tian-Xin, Duan Chuan-Xi
PDF
HTML
Get Citation
  • The intermolecular interactions involving the water molecule play important roles in many fields of physics, chemistry, and biology. High-resolution spectroscopy of Van der Waals complexes formed by a rare gas atom and a water molecule can provide a wealth of information about these intermolecular interactions. The precise experimental data can be used to test the accuracies and efficiencies of various theoretical methods of constructing the intermolecular potential energy surfaces and calculating the bound states. In this work, the high-resolution infrared absorption spectrum of the Ar-D2O complex in the v2 bending region of D2O is measured by using an external cavity quantum cascade laser. A segmented rapid-scan data acquisition method is employed. The Ar-D2O complex is generated in a slit supersonic jet expansion by passing Ar gas through a vessel containing liquid D2O. Four new rovibrational subbands are assigned in the spectral range of 1150–1190 cm–1, namely $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$, $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$, $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$ and $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) $$\leftarrow \Pi \left( {{1_{01}}} \right) $. The first two subbands belong to the otho- species of Ar-D2O, while the latter two belong to the para- species. The observed rovibrational transitions together with the previously reported pure rotational spectra having the common lower vibrational sub-states are analyzed by a weighted least-squares fitting using a pseudo-diatomic effective Hamiltonian. An experimental error of 10 kHz for the far-infrared transitions and 0.001 cm–1 for the infrared transitions are set in the global fitting when using Pickett’s program SPFIT, respectively. The molecular constants including vibrational substate energy, rotational and centrifugal distortion constants, and Coriolis coupling constant, are determined accurately. The previous results for the $\Pi \left( {{1_{11}}, {v_2} = 0} \right)$ substate are found to be likely incorrect. The energy of the $\Sigma \left( {{0_{00}}, {v_2} = 1} \right)$and $\Sigma \left( {{1_{01}}, {v_2} = 1} \right)$substates are determined experimentally for the first time. The band origin of Ar-D2O in the D2O v2 bending mode region is determined to be 1177.92144(13) cm–1, which is a red shift about 0.458 cm–1 compared with the head of D2O monomer. The experimental vibrational substate energy is compared with its theoretical value based on a four-dimensional intermolecular potential energy surface which includes the normal coordinate of the D2O v2 bending mode. The experimental and theoretical results are in good agreement with each other. But the calculated energy levels are generally higher than the experimental values, so, there is still much room for improving the theoretical calculations.
      Corresponding author: Duan Chuan-Xi, duanchx@mail.ccnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.11574107).
    [1]

    Fraser G T, Lovas F J, Suenram R D, Matsumura K 1990 J. Mol. Spectrosc. 144 97Google Scholar

    [2]

    Zwart E, Meerts W L 1991 Chem. Phys. 151 407Google Scholar

    [3]

    Germann T C, Gutowsky H S 1993 J. Chem. Phys. 98 5235Google Scholar

    [4]

    Cohen R C, Busarow K L, Laughlin K B, Blake G A, Havenith M, Lee Y T, Saykally R J 1988 J. Chem. Phys. 89 4494Google Scholar

    [5]

    Cohen R C, Busarow K L, Lee Y T, Saykally R J 1990 J. Chem. Phys. 92 169Google Scholar

    [6]

    Cohen R C, Saykally R J 1991 J. Chem. Phys. 95 7891Google Scholar

    [7]

    Suzuki S, Bumgarner R E, Stockman P A, Green P G, Blake G A 1991 J. Chem. Phys. 94 824Google Scholar

    [8]

    Zou L Y, Widicus Weaver S L 2016 J. Mol. Spectrosc. 324 12Google Scholar

    [9]

    Weida M J, Nesbitt D J 1997 J. Chem. Phys. 106 3078Google Scholar

    [10]

    Verdes D, Linnartz H 2002 Chem. Phys. Lett. 355 538Google Scholar

    [11]

    Li S, Zheng R, Zhu Y, Duan C X 2012 J. Mol. Spectrosc. 272 27Google Scholar

    [12]

    Stewart J T, McCall B J 2012 J. Mol. Spectrosc. 282 34Google Scholar

    [13]

    Liu X, Xu Y 2014 J. Mol. Spectrosc. 301 1Google Scholar

    [14]

    Lascola R, Nesbitt D J 1991 J. Chem. Phys. 95 7917Google Scholar

    [15]

    Nesbitt D J, Lascola R 1992 J. Chem. Phys. 97 8096Google Scholar

    [16]

    Kuma S, Slipchenko M N, Momose T, Vilesov A F 2010 J. Phys. Chem. A 114 9022Google Scholar

    [17]

    Didriche K, Földes T 2013 J. Chem. Phys. 138 104307Google Scholar

    [18]

    Vanfleteren T, Földes T, Herman M 2015 Chem. Phys. Lett. 627 36Google Scholar

    [19]

    Cohen R C, Saykally R J 1993 J. Chem. Phys. 98 6007Google Scholar

    [20]

    Hutson J M 1990 J. Chem. Phys. 92 157Google Scholar

    [21]

    Bulski M, Wormer P E S, Avoird A V D 1991 J. Chem. Phys. 94 8096Google Scholar

    [22]

    Chalasiński G, Szczȩśniak M M, Scheiner S 1991 J. Chem. Phys. 94 2807Google Scholar

    [23]

    Tao F M, Klemperer W 1994 J. Chem. Phys. 101 1129Google Scholar

    [24]

    Hodges M P, Wheatley R J, Harvey A H 2002 J. Chem. Phys. 117 7169Google Scholar

    [25]

    Makarewicz J 2008 J. Chem. Phys. 129 184310Google Scholar

    [26]

    Wang S H, He S S, Dai L C, Feng E Y, Huang W Y 2015 J. Chem. Phys. 142 224307Google Scholar

    [27]

    He S S, Chen D, Li Y, Feng E Y, Huang W Y 2016 Chem. Phys. Lett. 665 71Google Scholar

    [28]

    Li S, Zheng R, Duan C X 2014 Chin. Phys. B. 23 123301Google Scholar

    [29]

    Luo W, Duan C X 2016 Chin. Phys. Lett. 33 024207Google Scholar

    [30]

    Li X, Liu Z, Duan C X 2021 J. Mol. Spectrosc. 377 111424Google Scholar

    [31]

    Li X, Pu Y Y, Liu Z, Sun Y X, Duan C X 2022 J. Mol. Spectrosc. 383 111559Google Scholar

    [32]

    Drouin B J 2017 J. Mol. Spectrosc. 340 1Google Scholar

    [33]

    王申浩 2015 硕士学位论文 (芜湖: 安徽师范大学)

    Wang S H 2015 M. S. Dessertation (Wuhu: Anhui Normal University) (in Chinese)

  • 图 1  高分辨超声射流红外吸收光谱仪实验装置示意图.

    Figure 1.  The diagram of high-resolution supersonic jet infrared absorption spectrometer.

    图 2  Ar-D2O在D2O v2 弯曲振动带的能级示意图. 黑色箭头为本文观测跃迁谱带, 红色箭头为Li song 等观测跃迁谱带[11], 蓝色箭头为Stewart等观测跃迁谱带[12]

    Figure 2.  Energy levels of Ar-D2O in the v2 bending region of D2O. Black arrows represent the bands detected in the present work, red arrows represent the bands[11], blue arrows represent the bands[12].

    图 3  Ar-D2O的$\Sigma \left( { {1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{01}}} \right)$谱带 (a) 实验光谱; (b) 模拟光谱. 星号所示为D2O单体线

    Figure 3.  The spectrum for $\Sigma \left( { {1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{01}}} \right)$band of Ar-D2O: (a) Observed spectrum; (b) Simulated spectrum. Line marked with an asterisk is from the D2O monomer.

    图 4  Ar-D2O的$\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$谱带 (a) 实验光谱; (b) 模拟光谱. 星号所示为D2O单体线

    Figure 4.  The spectrum for $\Sigma \left( {{1_{01}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$band of Ar-D2O: (a) Observed spectrum; (b) Simulated spectrum. Line marked with an asterisk is from the D2O monomer.

    图 5  Ar-D2O的$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$$\Sigma( {0_{00}}, $$ {v_2} = 1 ) \leftarrow \Pi \left( {{1_{11}}} \right)$谱带 (a) 实验光谱; (b) 模拟光谱; 图中红色为$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$跃迁谱带, 蓝色为$\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$跃迁谱带. 星号所示为D2O单体线

    Figure 5.  The spectra for $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$and $\Sigma \left( {{0_{00}}, {v_2} = 1} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$bands of Ar-D2O: (a) Observed spectrum; (b) Simulated spectrum. The red is $\Sigma ( {0_{00}}, {v_2} = $$ 1 ) \leftarrow \Sigma \left( {{1_{11}}} \right)$band and the blue is $\Sigma ( {0_{00}}, {v_2} = 1) \leftarrow$ $\Pi \left( {{1_{11}}} \right) $band. Line marked with an asterisk is from the D2O monomer.

    表 1  Ar-D2O在远红外区域的跃迁谱线的重新拟合 (单位: MHz) a

    Table 1.  Refitting of transition frequencies of Ar-D2O in the far-infrared region (in MHz) a.

    Assignment$\Pi \left( {{1_{01}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b$\Pi \left( {{1_{10}}} \right) \leftarrow \Sigma \left( {{1_{01}}} \right)$b$\Sigma \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c$\Pi \left( {{1_{11}}} \right) \leftarrow \Sigma \left( {{0_{00}}} \right)$c
    P(15)593671.56(–85)
    P(14)594125.10(89)
    P(13)594617.34(63)
    P(12)595159.22(–50)
    P(11)595761.68(–81)
    P(10)596438.86(–22)
    P(9)286151.60(1)380426.47(0)597208.18(5)
    P(8)290294.16(–2)383658.52(1)598095.30(–5)
    P(7)294584.78(0)387168.84(0)599137.41(19)
    P(6)299029.93(–1)390958.16(1)600387.39(59)529456.94(–55)
    P(5)303635.47(1)395026.72(2)601924.22(95)538944.20(–44)
    P(4)308406.24(0)399374.40(0)603862.02(–15)548068.80(41)
    P(3)313346.09(–1)404000.86(0)606374.16(–75)
    P(2)318457.69(–2)408905.45(1)609688.76(68)564472.24(–33)
    P(1)614050.94(–94)
    Q(1)329209.16(0)419686.25(0)576854.64(14)
    Q(2)329225.88(0)419967.95(2)576845.60(10)
    Q(3)329249.43(0)420389.80(–2)576832.02(8)
    Q(4)329278.03(0)420951.17(1)576813.78(2)
    Q(5)329309.36(0)421650.90(0)576790.88(1)
    Q(6)329340.61(–1)422487.66(1)576763.12(–4)
    Q(7)329368.59(0)423459.73(0)576730.48(–3)
    Q(8)329389.75(1)424565.04(0)576692.81(1)
    Q(9)329400.26(0)425801.07(0)586649.90(–1)
    Q(10)576601.72(3)
    Q(11)576548.01(–4)
    Q(12)576488.93(5)
    Q(13)576424.08(–2)
    Q(14)
    R(0)334830.48(0)425278.22(1)626461.13((64)581244.48(–50)
    R(1)340629.81(2)431284.54(–2)634322.63(–7)
    R(2)346594.45(1)437562.59(–1)642975.68(–31)587181.98(–24)
    R(3)352719.13(1)444110.37(1)652188.92(–61)589211.88(44)
    R(4)358997.30(0)450925.49(–2)661789.14(–50)590861.04(70)
    R(5)365421.36(5)458005.35(–1)671655.74(25)592246.68(33)
    R(6)371982.39(–4)681704.80(21)593449.38(99)
    R(7)378671.09(–2)691879.92(–12)594518.75(–43)
    R(8)385477.11(4)702141.48(–1)595494.34(–90)
    R(9)392389.53(–2)712459.36(2)596401.33(–39)
    R(10)722811.14(14)597256.58(–2)
    R(11)733178.48(–15)598073.14(10)
    R(12)598861.05(8)
    R(13)599628.49(43)
    R(14)600380.64(31)
    R(15)601122.42(7)
    R(16)601856.02(–96)
    R(17)602584.84(46)
    a括号中的数字为 (实验值-计算值)×102;
    b 实验观测谱线来自于文献[2];
    c 实验观测谱线来自于文献[7].
    DownLoad: CSV

    表 2  Ar-D2O在D2O单体v2弯曲振动模附近的新观测谱线及拟合偏差 (单位: cm–1)a

    Table 2.  Newly observed transition frequencies and fitting residuals of Ar-D2O in v2 bending region of D2O (in cm–1)a.

    Assignment$\Sigma \left( {{0_{00}}} \right) \leftarrow \Sigma \left( {{1_{11}}} \right)$$\Sigma \left( {{0_{00}}} \right) \leftarrow \Pi \left( {{1_{11}}} \right)$$\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{10}}} \right)$$\Sigma \left( {{1_{01}}} \right) \leftarrow \Pi \left( {{1_{01}}} \right)$
    P(13)1157.9570(5)
    P(12)1157.9810(0)
    P(11)1158.0070(4)
    P(10)1158.0340(3)1164.6769(–2)
    P(9)1158.0627(0)1161.7230(–17)1164.9049(6)
    P(8)1158.0939(–3)1161.9839(2)1165.1281(–3)
    P(7)1158.1287(–2)1162.2345(–1)1165.3492(3)
    P(6)1158.1681(–1)1162.4770(–2)1165.5657(2)
    P(5)1158.2135(–3)1162.7108(–7)1165.7774(–5)
    P(4)1158.2685(2)1162.9371(–2)1165.9857(–1)
    P(3)1158.3354(–2)1163.1541(–5)1166.1901(11)
    P(2)1158.4209(–4)1163.3632(–1)1166.3873(1)
    P(1)1158.5331(–1)1166.5815(10)
    Q(1)1163.7504(2)
    Q(2)1163.7416(1)
    Q(3)1163.7289(3)
    Q(4)1158.6820(–3)1163.7117(4)
    Q(5)1158.6835(–3)1163.6902(3)
    Q(6)1158.6853(–2)1163.6645(3)1166.7712(0)
    Q(7)1158.6874(–1)1163.6348(4)1166.7728(–1)
    Q(8)1158.6899(0)1163.6005(0)1166.7752(0)
    Q(9)1158.6927(1)1163.5627(1)1166.7782(0)
    Q(10)1158.6957(1)1163.5207(–1)1166.7821(1)
    Q(11)1158.6991(1)1163.4753(1)1166.7868(0)
    Q(12)1158.7028(0)1163.4260(0)1166.7927(0)
    Q(13)1158.7070(1)1163.3730(–3)
    Q(14)1163.3171(–1)
    R(1)1157.5857(8)1167.1275(0)
    R(2)1157.6960(2)1159.3539(–3)1164.2752(0)1167.2987(–4)
    R(3)1157.7804(3)1159.6412(0)1164.4305(–5)1167.4657(2)
    R(4)1157.8455(0)1159.9463(1)1164.5782(2)1167.6264(0)
    R(5)1157.8977(2)1164.7160(0)1167.7819(–4)
    R(6)1157.9401(0)1164.8454(5)1167.9332(0)
    R(7)1157.9762(2)1164.9655(5)1168.0803(10)
    R(8)1165.0767(6)1168.2210(2)
    R(9)1165.1766(–17)1168.3581(1)
    R(10)1158.0580(0)1163.2720(2)1168.4914(3)
    R(11)1158.0795(–5)1168.6204(1)
    R(12)1158.0994(–6)1168.7455(–4)
    R(13)1168.8687(5)
    R(14)1158.1360(–1)
    R(15)1158.1528(2)
    a括号中的数字为 (实验值-计算值) ×104.
    DownLoad: CSV

    表 3  Ar-D2O各振动子能级的分子参数a

    Table 3.  Molecular constants of vibrational sub-states of Ar-D2Oa.

    ParameterGround stateD2O (v2 = 1) excited
    $\Sigma \left( {{0_{00}}} \right)$Ref. [7]This workThis work
    v/cm–11177.92144 (32)
    $B$/MHz2795.932795.86781(44)2797.88(11)
    $D$/kHz78.13777.7551(54)77.16(46)
    $H$/Hz–2.406–2.930 (19)–2.930(19) b
    $\Sigma \left( {{1_{11}}} \right)$Ref. [7]This workRef. [11]
    v/cm–1)20.669081(11)20.6690759(17)1199.84075(22)
    $B$/MHz)2808.409(30)2808.36099(61)2835.137(51)
    $D$/kHz)136.24(89)136.328(14)137.005(33)
    $H$/Hz)–23.3(69)–20.27(10)
    $L$/Hz)–0.084(18)–0.09110(29)
    $\Pi \left( {{1_{11}}} \right)$Ref. [7]This workRef. [11]
    v/cm–1)19.335135(11)19.2419471 (16)1198.12738(22)
    $B$/ MHz2793.526(22)2793.46903(54)2767.084(51)
    ${D^{\text{e}}}$/kHz13.84(74)13.308(12)20.806(33)
    ${D^{\text{f}}}$/ kHz79.06(33)78.7624(73)
    $ {H^{\text{e}}} $/Hz–1.49(58)–17.565(94)
    $ {H^{\text{f}}} $/Hz–1.7(13)–1.902(27)
    ${L^{\text{e}}}$/Hz0.140(14)0.14473(24)
    $\beta $/MHz5141.09(12)3635.3021(12)3509.22(19)
    $\Sigma \left( {{1_{01}}} \right)$Ref. [2]This workThis work
    v /cm–11177.74889(26)
    $B$/MHz2729.114(10)2729.11326(75)2734.85(98)
    $D$/kHz52.96(24)52.965(19)53.90(42)
    $H$/Hz–13.5(17)–13.40(13)–13.40(13)
    $\Pi \left( {{1_{01}}} \right)$Ref. [2]This workRef. [12]
    v/cm–110.9809467(18)10.9809468(17)1189.41215(11)
    ${B^{\text{e}}}$/MHz2815.2130(92)2815.21185(76)
    ${B^{\text{f}}}$/MHz2733.497(12)2742.423 (66)
    ${D^{\text{e}}}$/kHz110.24(18)110.229(16)
    ${D^{\text{f}}}$/kHz78.66(31)78.665(28)75.65(25)
    $ {H^{\text{e}}} $/Hz23.2(11)23.228(96)
    $ {H^{\text{f}}} $/Hz5.0(23)5.07(21)
    $\Pi \left( {{1_{10}}} \right)$Ref. [2]This workRef. [11]
    v /cm–113.9945245(20)13.9945245(19)1192.86911(21)
    ${B^{\text{e}}}$/MHz2866.584(19)2866.5846(12)2855.13(60)
    ${B^{\text{f}}}$/MHz2799.615(18)2799.6154(11)2793.37(19)
    ${D^{\text{e}}}$/kHz61.65(90)61.646(40)47.97(79)
    ${D^{\text{f}}}$/kHz63.21(68)63.211(30)35.08(20)
    $ {H^{\text{e}}} $/Hz–32(13)–31.95(37)
    $ {H^{\text{f}}} $/Hz–22.2(74)–22.22(22)
    a 括号中的数字为拟合标准偏差;
    b 固定在基态值上.
    DownLoad: CSV

    表 4  Ar-D2O实验与理论计算的振动子能级间隔比较

    Table 4.  Comparison between observed and calculated vibrational sub-state energies of Ar-D2O.

    v2=0D2O v2=1 excited
    Exp.Theo. cExp.-Theo.Exp.Theo. cExp.-Theo.
    $\Pi \left( {{1_{11}}} \right)$a19.241919.4189–0.17720.299620.4349–0.1353
    $\Sigma \left( {{1_{11}}} \right)$a20.669120.9706–0.301521.363322.0928–0.6647
    $\Pi \left( {{1_{01}}} \right)$b10.980910.97850.002411.663311.63290.0304
    $ \Pi \left( {{1_{10}}} \right) $ b13.994514.4571–0.462415.120215.4173–0.2971
    a $\Pi \left( {{1_{11}}} \right)$和$\Sigma \left( {{1_{11}}} \right)$相对于$\Sigma \left( {{0_{00}}} \right)$的能级间隔;
    b $\Pi \left( {{1_{01}}} \right)$和$\Pi \left( {{1_{10}}} \right)$相对于$\Sigma \left( {{1_{01}}} \right)$的能级间隔;
    c 理论计算值来自于文献[33] .
    DownLoad: CSV
    Baidu
  • [1]

    Fraser G T, Lovas F J, Suenram R D, Matsumura K 1990 J. Mol. Spectrosc. 144 97Google Scholar

    [2]

    Zwart E, Meerts W L 1991 Chem. Phys. 151 407Google Scholar

    [3]

    Germann T C, Gutowsky H S 1993 J. Chem. Phys. 98 5235Google Scholar

    [4]

    Cohen R C, Busarow K L, Laughlin K B, Blake G A, Havenith M, Lee Y T, Saykally R J 1988 J. Chem. Phys. 89 4494Google Scholar

    [5]

    Cohen R C, Busarow K L, Lee Y T, Saykally R J 1990 J. Chem. Phys. 92 169Google Scholar

    [6]

    Cohen R C, Saykally R J 1991 J. Chem. Phys. 95 7891Google Scholar

    [7]

    Suzuki S, Bumgarner R E, Stockman P A, Green P G, Blake G A 1991 J. Chem. Phys. 94 824Google Scholar

    [8]

    Zou L Y, Widicus Weaver S L 2016 J. Mol. Spectrosc. 324 12Google Scholar

    [9]

    Weida M J, Nesbitt D J 1997 J. Chem. Phys. 106 3078Google Scholar

    [10]

    Verdes D, Linnartz H 2002 Chem. Phys. Lett. 355 538Google Scholar

    [11]

    Li S, Zheng R, Zhu Y, Duan C X 2012 J. Mol. Spectrosc. 272 27Google Scholar

    [12]

    Stewart J T, McCall B J 2012 J. Mol. Spectrosc. 282 34Google Scholar

    [13]

    Liu X, Xu Y 2014 J. Mol. Spectrosc. 301 1Google Scholar

    [14]

    Lascola R, Nesbitt D J 1991 J. Chem. Phys. 95 7917Google Scholar

    [15]

    Nesbitt D J, Lascola R 1992 J. Chem. Phys. 97 8096Google Scholar

    [16]

    Kuma S, Slipchenko M N, Momose T, Vilesov A F 2010 J. Phys. Chem. A 114 9022Google Scholar

    [17]

    Didriche K, Földes T 2013 J. Chem. Phys. 138 104307Google Scholar

    [18]

    Vanfleteren T, Földes T, Herman M 2015 Chem. Phys. Lett. 627 36Google Scholar

    [19]

    Cohen R C, Saykally R J 1993 J. Chem. Phys. 98 6007Google Scholar

    [20]

    Hutson J M 1990 J. Chem. Phys. 92 157Google Scholar

    [21]

    Bulski M, Wormer P E S, Avoird A V D 1991 J. Chem. Phys. 94 8096Google Scholar

    [22]

    Chalasiński G, Szczȩśniak M M, Scheiner S 1991 J. Chem. Phys. 94 2807Google Scholar

    [23]

    Tao F M, Klemperer W 1994 J. Chem. Phys. 101 1129Google Scholar

    [24]

    Hodges M P, Wheatley R J, Harvey A H 2002 J. Chem. Phys. 117 7169Google Scholar

    [25]

    Makarewicz J 2008 J. Chem. Phys. 129 184310Google Scholar

    [26]

    Wang S H, He S S, Dai L C, Feng E Y, Huang W Y 2015 J. Chem. Phys. 142 224307Google Scholar

    [27]

    He S S, Chen D, Li Y, Feng E Y, Huang W Y 2016 Chem. Phys. Lett. 665 71Google Scholar

    [28]

    Li S, Zheng R, Duan C X 2014 Chin. Phys. B. 23 123301Google Scholar

    [29]

    Luo W, Duan C X 2016 Chin. Phys. Lett. 33 024207Google Scholar

    [30]

    Li X, Liu Z, Duan C X 2021 J. Mol. Spectrosc. 377 111424Google Scholar

    [31]

    Li X, Pu Y Y, Liu Z, Sun Y X, Duan C X 2022 J. Mol. Spectrosc. 383 111559Google Scholar

    [32]

    Drouin B J 2017 J. Mol. Spectrosc. 340 1Google Scholar

    [33]

    王申浩 2015 硕士学位论文 (芜湖: 安徽师范大学)

    Wang S H 2015 M. S. Dessertation (Wuhu: Anhui Normal University) (in Chinese)

  • [1] Fan Jun-Yu, Gao Nan, Wang Peng-Ju, Su Yan. Intermolecular interactions and thermodynamic properties of LLM-105. Acta Physica Sinica, 2024, 73(4): 046501. doi: 10.7498/aps.73.20231696
    [2] Wang Hui-Yao, Wei Fu-Xian, Wu Yu-Ting, Peng Teng, Liu Jun-Hong, Wang Bo, Xiong Zu-Hong. Enhanced reverse inter-system crossing process of charge-transfer stated induced by carrier balance in exciplex-type OLEDs. Acta Physica Sinica, 2023, 72(17): 177201. doi: 10.7498/aps.72.20230949
    [3] Zhao Xi, Chen Jing, Peng Teng, Liu Jun-Hong, Wang Bo, Chen Xiao-Li, Xiong Zu-Hong. Non-monotonic current dependence of intersystem crossing and reverse intersystem crossing processes in exciplex-based organic light-emitting diodes. Acta Physica Sinica, 2023, 72(16): 167201. doi: 10.7498/aps.72.20230765
    [4] Liu Xiu-Cheng, Yang Zhi, Guo Hao, Chen Ying, Luo Xiang-Long, Chen Jian-Yong. Molecular dynamics simulation of thermal conductivity of diamond/epoxy resin composites. Acta Physica Sinica, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [5] Yuan Hong-Rui, Liu Tao, Zhu Tian-Xin, Liu Yun, Li Xiang, Chen Yang, Duan Chuan-Xi. High-resolution jet-cooled laser absorption spectra of SF6 at 10.6 μm. Acta Physica Sinica, 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [6] Wang Xiao-Lu, Linghu Rong-Feng, Song Xiao-Shu, Lü Bing, Yang Xiang-Dong. Interactional potential of helium atom and hydrogen halide molecules. Acta Physica Sinica, 2013, 62(16): 163101. doi: 10.7498/aps.62.163101
    [7] Sun Wei-Feng, Wang Xuan. Molecular dynamics simulation study of polyimide/copper-nanoparticle composites. Acta Physica Sinica, 2013, 62(18): 186202. doi: 10.7498/aps.62.186202
    [8] Li Lin, Wang Xuan, Sun Wei-Feng, Lei Qing-Quan. Molecular dynamics simulation of polyethylene/silver-nanoparticle composites. Acta Physica Sinica, 2013, 62(10): 106201. doi: 10.7498/aps.62.106201
    [9] Zhao Yan-Hong, Liu Hai-Feng, Zhang Qi-Li. Unlike-pair interactions of detonation products at high pressure and high temperature. Acta Physica Sinica, 2012, 61(23): 230509. doi: 10.7498/aps.61.230509
    [10] Liu Tian-Yuan, Sun Cheng-Lin, Li Zuo-Wei, Zhou Mi. Raman spectroscopy study on the C/H interaction between benzene and chloroform. Acta Physica Sinica, 2012, 61(10): 107801. doi: 10.7498/aps.61.107801
    [11] Wang Jie-Min, Sun Jin-Feng. Multireference configuration interaction study on spectroscopic parameters and molecular constants of AsN(X1 +) radical. Acta Physica Sinica, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [12] Zhao Yan-Hong, Liu Hai-Feng, Zhang Gong-Mu, Zhang Guang-Cai. Pair interactions of detonation products at high pressure and high temperature. Acta Physica Sinica, 2011, 60(12): 123401. doi: 10.7498/aps.60.123401
    [13] Yu Chun-Ri, Huang Shi-Zhong, Shi Shou-Hua, Cheng Xin-Lu, Yang Xiang-Dong. The influence of the CCSD (T) potential energy surface of the Ne-HBr complex on rotationally inelastic partial cross sections. Acta Physica Sinica, 2007, 56(10): 5739-5745. doi: 10.7498/aps.56.5739
    [14] SHI WEI, FANG CHANG-SHUI, XU ZHI-LING, PAN QI-WEI, ZHAO XIAN, GU QIN-TIAN, XU DONG, YU JIN-ZHONG. EFFECT OF THE ELECTROSTATIC INTERACTIONS OF CHROMOPHORES ON THE MACROSCOPIC SECOND-ORDER NONLINEAR OPTICAL PROPERTIES OF THE POLYMER FILMS. Acta Physica Sinica, 2000, 49(5): 904-910. doi: 10.7498/aps.49.904
    [15] FENG SHAO-XIN, JIN QING-HUA, GUO ZHEN-YA, LI BAO-HUI, DING DA-TONG. EMPIRICAL PARAMETERIZATION OF INTER-IONIC POTENTIALS FOR ALKALINE EARTH FLUORIDES. Acta Physica Sinica, 1998, 47(11): 1811-1817. doi: 10.7498/aps.47.1811
    [16] YAN JIA-REN, MEI YU-PING. INTERACTION BETWEEN SOLITONS IN OPTICAL FIBERS. Acta Physica Sinica, 1996, 45(7): 1122-1129. doi: 10.7498/aps.45.1122
    [17] DAI CHANG-JIAN. INTERACTIONS OF AUTOIONIZING SERIES. Acta Physica Sinica, 1994, 43(3): 369-379. doi: 10.7498/aps.43.369
    [18] GUO CHANG-ZHI, HUANG YONG-ZHEN. EFFECT OF THE MODAL INTERACTION ON THE SPECTRAL LINEWIDTH IN THE NEARLY SINGLE MODE SEMICONDUCTOR LASERS. Acta Physica Sinica, 1990, 39(7): 59-65. doi: 10.7498/aps.39.59-2
    [19] YU BAO-SHAN, HU DAI-LIN, SU BIN-LI. THE EFFECT OF INTERMOLECULAR INTERACTION ON THE RAMAN BAND INTENSITY. Acta Physica Sinica, 1966, 22(6): 714-718. doi: 10.7498/aps.22.714
    [20] A. T. Kiang. Vibrational-Rotational Spectrum and Potential Function of a Linenr Asymmetrical Triatomlc Molecule. Acta Physica Sinica, 1944, 5(1): 49-63. doi: 10.7498/aps.5.49
Metrics
  • Abstract views:  3074
  • PDF Downloads:  48
  • Cited By: 0
Publishing process
  • Received Date:  02 September 2022
  • Accepted Date:  22 September 2022
  • Available Online:  18 October 2022
  • Published Online:  05 January 2023

/

返回文章
返回
Baidu
map