-
The binding energies, electronic structures and optical properties of LiNbO3 and Cu/Fe doped LiNbO3 crystals are investigated by first principles based on the density functional theory in this paper. The supersell structures of crystals are established each with 60 atoms, including five models: pure LiNbO3, LN1 (Cu2+ occupy Li+ site), LN2 (Fe3+ occupy Li+ site), LN3 (Cu2+ occupy Li+site and Fe3+ occupy Li+ site) and LN4 (Cu2+ occupy Li+ site and Fe3+ occupy Nb5+ site). The optimized results show that the total energies of all models can achieve certain stable values, which means that the models accord with the actual crystal structures. The impurity energy levels of Cu and Fe doped LiNbO3 crystals appear within the band gaps, which are contributed by Cu 3d orbital, Fe 3d orbital and O 2p orbital; in co-doped LiNbO3, Cu offers deep energy level and Fe offers shallow energy level within the band gaps. There are two wide absorption peaks appearing respectively at 445 nm and 630 nm in co-doped LiNbO3 crystal, which correspond to the electron transitions from Eg orbital of Cu to Nb 4d orbital and T2g orbital of Fe to Nb 4d orbital respectively; the absorption edge of Cu, Fe mono and co-doped LiNbO3 crystals are red-shift successively, which coincides with the variation of band gape. The light absorption intensity of co-doped LiNbO3 crystal is stronger than that of mono-doped LiNbO3 crystal. The co-doped sample light absorption property is related to Fe site occupation. In this paper, it is suggested that the co-doped sample with Fe at Nb site is more competitive than that with Fe at Li site in optical volume holographic storage applications, and that reducing properly [Fe2+]/[Fe3+] value may be conducible to the formation of this advantage.
-
Keywords:
- first-principles /
- LiNbO3 crystals /
- electronic structure /
- optical properties
[1] Li X C, Qu X D, Zhao X J, Meng X J, Zhang L L 2013 Chin. Phys. B 22 024203
[2] Shen Y, Zhang G Q, Yu W B, Guo Z Z, Zhao Y Q 2012 Acta Phys. Sin. 61 184205 (in Chinese) [申岩, 张国庆, 于文斌, 郭志忠, 赵业权 2012 61 184205]
[3] Micheron F, Bismuth G 1972 Appl. Phys. Lett. 20 79
[4] Amodei J J, Staebler D L 1971 Appl. Phys. Lett. 18 540
[5] Buse K, Adibi A, Psaltis D 1998 Nature 393 665
[6] Liu D A, Liu L R, Zhou C H, Ren L Y, Li G G 2002 Appl. Opt. 41 6809
[7] Xu C, Leng Xu S, Xu L, Wen A H, Xu Y H 2012 Opt. Commun. 285 3868
[8] Liu Y W, Liu L R, Xu L Y, Zhou C H 2000 Opt. Commun. 181 47
[9] Cheng H J, Shi L H, Yan W B, Chen G F, Shen J, Shen X N, Li Y X 2010 Chin. Phys. B 19 084203
[10] Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401
[11] Ching W Y, Gu Z Q, Xu Y N 1994 Phys. Rev. B 50 1992
[12] Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013
[13] Kong Y F, Xu J J, Zhang G Y 2005 Multi-function Photoelectric Materials LiNbO3 Crystal (Beijing: Sciences Press) pp42, 43 (in Chinese) [孔勇发, 许京军, 张光寅 2005 多功能光电材料-铌酸锂晶体 (北京: 科学出版社) 第42, 43页]
[14] Zaldo C, Prieto C 1992 Ferroelectrics 134 47
[15] Zheng W, Gui Q, Xu Y H 2008 Cryst. Res. Technol. 43 526
[16] Xu H X, Chernatynskiy A, Lee D, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2010 Phys. Rev. B 82 184109
[17] Segall M D, Philip Lindan J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[18] Mamoun S, Merad A E, Guilbert L 2013 Comput. Mater. Sci. 79 125
[19] Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese) [赵佰强, 张耘, 邱晓燕, 王学维 2015 64 124210]
[20] Ma Q M, Xie Z, Wang J, Liu Y, Li Y C 2007 Solid State Commun. 142 114
[21] Xu H X, Lee D, He J, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2008 Phys. Rev. B 78 174103
[22] Schirmer O F, Thiemann O, Whlecke M 1991 J. Phys. Chem. Solids 52 185
[23] Tsuboi T, Grinberg M, Kaczmarek S M 2002 J. Alloys Compd. 341 333
[24] Kar S, Verma S, Bartwal K S 2008 Cryst. Growth Des. 8 4424
[25] Su Y C, Xiao L H, Fu Y C, Zhang P F, Peng P 2011 Sci. China Ser. G 41 58 (in Chinese) [苏玉长, 肖立华, 伏云昌, 张鹏飞, 彭平 2011 中国科学G 辑:物理学 力学 天文学 41 58]
[26] Sun X D, Luo S H, Wang J, Jiang Y Y, Shi H X 2009 J. Phys. D: Appl. Phys. 42 115413
[27] Xu C, Leng X S, Mo Y, Wang Y J, Cao L C, Yang H H, Xu Y H 2011 J. Cryst. Growth 318 665
[28] Pankratov V, Millers D, Grigorjeva L, Matkovskii A O, Potera P, Pracka I, kasiewicz T 2003 Opt. Mater. 22 257
[29] Wang Y J, Mo Y, Wen A H, Xu C, Leng X S, Zhang C L, Xu L, Xu Y H 2011 J. Chin. Ceram. Soc. 39 355 (in Chinese) [王义杰, 莫阳, 文爱华, 徐超, 冷雪松, 张春雷, 徐磊, 徐玉恒 2011 硅酸盐学报 39 355]
[30] Hou J Y, Tao S Q, Jiang Z Q 2004 J. Optoelectron. Laser 15 594 (in Chinese) [候金英, 陶世荃, 江竹青 2004 光电子 15 594]
[31] Hou J Y, Jiang Z Q, Liu G Q, Tao S Q 2002 Proceedings of the SPIE International Conference on Electronic Imaging and Multimedia Technology, Photonics Asia Shanghai, China, October 14-18, 2002 p199
[32] Ren L Y, Liu L R, Liu D A, Zhou C H, Li G G 2003 Opt. Mater. 23 261
-
[1] Li X C, Qu X D, Zhao X J, Meng X J, Zhang L L 2013 Chin. Phys. B 22 024203
[2] Shen Y, Zhang G Q, Yu W B, Guo Z Z, Zhao Y Q 2012 Acta Phys. Sin. 61 184205 (in Chinese) [申岩, 张国庆, 于文斌, 郭志忠, 赵业权 2012 61 184205]
[3] Micheron F, Bismuth G 1972 Appl. Phys. Lett. 20 79
[4] Amodei J J, Staebler D L 1971 Appl. Phys. Lett. 18 540
[5] Buse K, Adibi A, Psaltis D 1998 Nature 393 665
[6] Liu D A, Liu L R, Zhou C H, Ren L Y, Li G G 2002 Appl. Opt. 41 6809
[7] Xu C, Leng Xu S, Xu L, Wen A H, Xu Y H 2012 Opt. Commun. 285 3868
[8] Liu Y W, Liu L R, Xu L Y, Zhou C H 2000 Opt. Commun. 181 47
[9] Cheng H J, Shi L H, Yan W B, Chen G F, Shen J, Shen X N, Li Y X 2010 Chin. Phys. B 19 084203
[10] Veithen M, Gonze X, Ghosez P 2004 Phys. Rev. Lett. 93 187401
[11] Ching W Y, Gu Z Q, Xu Y N 1994 Phys. Rev. B 50 1992
[12] Abrahams S C, Hamilton W C, Reddy J M 1966 J. Phys. Chem. Solids 27 1013
[13] Kong Y F, Xu J J, Zhang G Y 2005 Multi-function Photoelectric Materials LiNbO3 Crystal (Beijing: Sciences Press) pp42, 43 (in Chinese) [孔勇发, 许京军, 张光寅 2005 多功能光电材料-铌酸锂晶体 (北京: 科学出版社) 第42, 43页]
[14] Zaldo C, Prieto C 1992 Ferroelectrics 134 47
[15] Zheng W, Gui Q, Xu Y H 2008 Cryst. Res. Technol. 43 526
[16] Xu H X, Chernatynskiy A, Lee D, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2010 Phys. Rev. B 82 184109
[17] Segall M D, Philip Lindan J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[18] Mamoun S, Merad A E, Guilbert L 2013 Comput. Mater. Sci. 79 125
[19] Zhao B Q, Zhang Y, Qiu X Y, Wang X W 2015 Acta Phys. Sin. 64 124210 (in Chinese) [赵佰强, 张耘, 邱晓燕, 王学维 2015 64 124210]
[20] Ma Q M, Xie Z, Wang J, Liu Y, Li Y C 2007 Solid State Commun. 142 114
[21] Xu H X, Lee D, He J, Sinnott S B, Gopalan V, Dierolf V, Phillpot S R 2008 Phys. Rev. B 78 174103
[22] Schirmer O F, Thiemann O, Whlecke M 1991 J. Phys. Chem. Solids 52 185
[23] Tsuboi T, Grinberg M, Kaczmarek S M 2002 J. Alloys Compd. 341 333
[24] Kar S, Verma S, Bartwal K S 2008 Cryst. Growth Des. 8 4424
[25] Su Y C, Xiao L H, Fu Y C, Zhang P F, Peng P 2011 Sci. China Ser. G 41 58 (in Chinese) [苏玉长, 肖立华, 伏云昌, 张鹏飞, 彭平 2011 中国科学G 辑:物理学 力学 天文学 41 58]
[26] Sun X D, Luo S H, Wang J, Jiang Y Y, Shi H X 2009 J. Phys. D: Appl. Phys. 42 115413
[27] Xu C, Leng X S, Mo Y, Wang Y J, Cao L C, Yang H H, Xu Y H 2011 J. Cryst. Growth 318 665
[28] Pankratov V, Millers D, Grigorjeva L, Matkovskii A O, Potera P, Pracka I, kasiewicz T 2003 Opt. Mater. 22 257
[29] Wang Y J, Mo Y, Wen A H, Xu C, Leng X S, Zhang C L, Xu L, Xu Y H 2011 J. Chin. Ceram. Soc. 39 355 (in Chinese) [王义杰, 莫阳, 文爱华, 徐超, 冷雪松, 张春雷, 徐磊, 徐玉恒 2011 硅酸盐学报 39 355]
[30] Hou J Y, Tao S Q, Jiang Z Q 2004 J. Optoelectron. Laser 15 594 (in Chinese) [候金英, 陶世荃, 江竹青 2004 光电子 15 594]
[31] Hou J Y, Jiang Z Q, Liu G Q, Tao S Q 2002 Proceedings of the SPIE International Conference on Electronic Imaging and Multimedia Technology, Photonics Asia Shanghai, China, October 14-18, 2002 p199
[32] Ren L Y, Liu L R, Liu D A, Zhou C H, Li G G 2003 Opt. Mater. 23 261
Catalog
Metrics
- Abstract views: 7364
- PDF Downloads: 314
- Cited By: 0