-
Active illumination with narrow spectrum laser based on ladderlike phase modulator (LPM), is an effective method to improve the illumination uniformity. Laser spectrum style, lens number of LPM, and lens thickness error of LPM are three significant factors influencing the illumination uniformity in engineering. The laws of the three factors with scintillation indexes are analyzed through numerical simulation. The results indicate that the laser spectrum style is not an important factor, and the spatial scintillation index of uniformity, Gauss, Lorenz style narrow spectrum laser are 0.27, 0.28, and 0.28 respectively. The scintillation indexes decrease gradually with the lens number of LPM increasing. The spatial scintillation index increases from 0.266 to 0.271, when the lens thickness error of LPM is –0.6 mm. Therefore, several ideas are proposed: when this method is used in the engineering project, some attention should be paid to laser spectrum style, the lens number of LPM should be optimized by considering the laser spectrum width and scintillation index synchronously, and the negative error of optical lens thickness gradient of LPM should be controlled attentively.
[1] 苏毅, 万敏 2004 高能激光系统 (北京: 国防工业出版社) 第181页
Su Y, Wan M 2004 High Energy Laser System (Beijing: National Defense Industrial Press) p181 (in Chinese)
[2] 谭毅, 耿超, 李新阳, 罗文, 罗奇 2015 64 024216Google Scholar
Tan Y, Geng C, Li X Y, Luo W, Luo Q 2015 Acta Phys. Sin. 64 024216Google Scholar
[3] 张飞舟, 李有宽 2007 光学学报 22 567Google Scholar
Zhang F Z, Li Y K 2007 Acta Opt. Sin. 22 567Google Scholar
[4] Peleg A, Moloney J V 2006 J. Opt. Soc. Am. A 23 3114Google Scholar
[5] Higgs C, Barclay H T 1998 Part of the SPIE Conference on Airborne Laser Advanced Technology Orlando, Florido, USA, April, 1998 p160
[6] Higgs C, Barclay H T 1999 Part of the SPIE Conference on Airborne Laser Advanced Technology II Orlando, Florido, USA, April, 1999 p206
[7] 万敏, 张卫, 向汝建, 杨锐 2002 强激光与粒子束 14 0041
Wan M, Zhang W, Xiang R J, Yang R 2002 High Power Laser and Particle Beam 14 0041
[8] 李宾中, 吕百达, 万敏, 李国会, 郑捷, 张卫 2003 激光技术 27 334Google Scholar
Li B Z, Lü B D, Wan M, Li G H, Zheng J, Zhang W 2003 Laser Tech. 27 334Google Scholar
[9] Poyet J M, Meyer O, Christnacher F 2014 Opt. Lett. 39 2592Google Scholar
[10] 康凯 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Kang K 2019 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[11] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱 2021 70 154207Google Scholar
Luo W, Chen T J, Zhang F Z, Zhou K, An J Z, Zhang J Z 2021 Acta Phys. Sin. 70 154207Google Scholar
[12] 谢晓钢, 张建柱, 岳玉芳, 安建祝, 张飞舟 2013 强激光与粒子束 25 2536Google Scholar
Xie X G, Zhang J Z, Yue Y F, An J Z, Zhang F Z 2013 High Power Laser and Particle Beam 25 2536Google Scholar
[13] 张建柱, 张飞舟, 吴毅 2012 强激光与粒子束 24 2318Google Scholar
Zhang J Z, Zhang F Z, Wu Y 2012 High Power Laser and Particle Beam 24 2318Google Scholar
[14] 陈钰清, 王静环 2008 激光原理 (杭州: 浙江大学出版社) 第240—265页
Chen Y Q, Wang J H 2008 Laser Principle (Hangzhou: Zhejiang University Press) pp240–265 (in Chinese)
-
图 4 不同谱线线型窄谱激光照明远场光斑分布 (a)无阶梯相位调制器; (b)−(d)有阶梯相位调制器, 其中激光谱线线型分别为(b)均匀型、(c)高斯型、(d)洛伦兹型
Figure 4. Typical focal patterns with different laser spectrum styles: (a) No LPM; (b)–(d) LPM, where the laser spectrum styles in panel (b)–(d) are (b) uniformity style, (c) Gauss style, (d) Lorenz style, respectively.
表 1 阶梯相位调制器光学镜厚度
Table 1. Lens thickness of LPM.
光学镜
数量激光线宽/ nm 0.04
(~10 GHz)0.19
(~50 GHz)0.38
(~100 GHz)厚度/mm 1 0 0 0 2 56.60 11.92 5.96 3 113.21 23.83 11.92 4 169.81 35.75 17.88 5 226.42 47.66 23.83 6 283.02 59.58 29.79 -
[1] 苏毅, 万敏 2004 高能激光系统 (北京: 国防工业出版社) 第181页
Su Y, Wan M 2004 High Energy Laser System (Beijing: National Defense Industrial Press) p181 (in Chinese)
[2] 谭毅, 耿超, 李新阳, 罗文, 罗奇 2015 64 024216Google Scholar
Tan Y, Geng C, Li X Y, Luo W, Luo Q 2015 Acta Phys. Sin. 64 024216Google Scholar
[3] 张飞舟, 李有宽 2007 光学学报 22 567Google Scholar
Zhang F Z, Li Y K 2007 Acta Opt. Sin. 22 567Google Scholar
[4] Peleg A, Moloney J V 2006 J. Opt. Soc. Am. A 23 3114Google Scholar
[5] Higgs C, Barclay H T 1998 Part of the SPIE Conference on Airborne Laser Advanced Technology Orlando, Florido, USA, April, 1998 p160
[6] Higgs C, Barclay H T 1999 Part of the SPIE Conference on Airborne Laser Advanced Technology II Orlando, Florido, USA, April, 1999 p206
[7] 万敏, 张卫, 向汝建, 杨锐 2002 强激光与粒子束 14 0041
Wan M, Zhang W, Xiang R J, Yang R 2002 High Power Laser and Particle Beam 14 0041
[8] 李宾中, 吕百达, 万敏, 李国会, 郑捷, 张卫 2003 激光技术 27 334Google Scholar
Li B Z, Lü B D, Wan M, Li G H, Zheng J, Zhang W 2003 Laser Tech. 27 334Google Scholar
[9] Poyet J M, Meyer O, Christnacher F 2014 Opt. Lett. 39 2592Google Scholar
[10] 康凯 2019 硕士学位论文 (哈尔滨: 哈尔滨工业大学)
Kang K 2019 M. S. Thesis (Harbin: Harbin Institute of Technology) (in Chinese)
[11] 罗文, 陈天江, 张飞舟, 邹凯, 安建祝, 张建柱 2021 70 154207Google Scholar
Luo W, Chen T J, Zhang F Z, Zhou K, An J Z, Zhang J Z 2021 Acta Phys. Sin. 70 154207Google Scholar
[12] 谢晓钢, 张建柱, 岳玉芳, 安建祝, 张飞舟 2013 强激光与粒子束 25 2536Google Scholar
Xie X G, Zhang J Z, Yue Y F, An J Z, Zhang F Z 2013 High Power Laser and Particle Beam 25 2536Google Scholar
[13] 张建柱, 张飞舟, 吴毅 2012 强激光与粒子束 24 2318Google Scholar
Zhang J Z, Zhang F Z, Wu Y 2012 High Power Laser and Particle Beam 24 2318Google Scholar
[14] 陈钰清, 王静环 2008 激光原理 (杭州: 浙江大学出版社) 第240—265页
Chen Y Q, Wang J H 2008 Laser Principle (Hangzhou: Zhejiang University Press) pp240–265 (in Chinese)
Catalog
Metrics
- Abstract views: 3545
- PDF Downloads: 65
- Cited By: 0