Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Group theory based formation mechanism and evolution of multiple Fano resonances in dielectric nanohole arrays with lattice-perturbed

Chen Ying Li Mei-Jie Zhao Meng Wang Jian-Kun

Citation:

Group theory based formation mechanism and evolution of multiple Fano resonances in dielectric nanohole arrays with lattice-perturbed

Chen Ying, Li Mei-Jie, Zhao Meng, Wang Jian-Kun
PDF
HTML
Get Citation
  • Based on the electromagnetic properties of all-dielectric optical metamaterial, an all-dielectric metasurface of lattice-perturbed nanohole array is proposed to excite a multiple Fano resonance in the near-infrared region. Combined with the group theory, the formation mechanism and evolution law of multiple Fano resonances in this structure when its unit cell is a square lattice configuration and the square lattice symmetry is broken are explored in depth. The results show that double degenerate mode directly excited by the normal incident plane wave is coupled to vertical free-space radiation continuum to form double Fano resonance when unit cell is symmetrical, while the uncoupled non-degenerate modes excited by the normal incident plane wave is coupled to vertical free-space radiation continuum to form triple Fano resonance with higher Q factor when the symmetry is broken. Numerical simulation is used to explore the influences of x-polarized and y-polarized plane wave on the above Fano resonances, and the results show that the Fano resonance of double degenerate resonance is polarization independent, while the non-degenerate resonance is polarization dependent. The findings in this work can provide an effective theoretical reference for designing other square lattice metasurface to realize the excitation and evolution of multiple Fano resonances.
      Corresponding author: Chen Ying, Chenying@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61201112), the Key Research and Development Project of Hebei Province, China (Grant Nos. 19273901D, 20373301D), the Natural Science Foundation of Hebei Province, China (Grant No. F2020203066), the China Postdoctoral Science Foundation (Grant No. 2018M630279), the Post-Doctoral Research Projects in Hebei Province, China (Grant No. D2018003028), the Scientific Research Foundation of the Higher Education Institutions of Hebei Province, China (Grant No. ZD2018243).
    [1]

    鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配 2021 70 034204Google Scholar

    Lu L D, Zhu L Q, Zeng Z M, Cui Y P, Zhang D L, Yuan P 2021 Acta Phys. Sin. 70 034204Google Scholar

    [2]

    Tribelsky M I, Miroshnichenko A E 2016 Phys. Rev. A 93 053837Google Scholar

    [3]

    Kong X H, Xiao G B 2016 J. Opt. Soc. Am. A 33 707Google Scholar

    [4]

    Poddubny A N, Rybin M V, Limonov M F, Kivshar Y S 2012 Nat. Commun. 3 914Google Scholar

    [5]

    Rybin M V, Mingaleev S F, Limonov M F, Kivshar Y S 2016 Sci. Rep. 6 20599Google Scholar

    [6]

    Rybin M V, Khanikaev A B, Inoue M, Samusev K B, Steel M J, Yushin G, Limonov M F 2009 Phys. Rev. Lett. 103 023901Google Scholar

    [7]

    Sharac, N, Sharma H, Veysi M, Sanderson R N, Khine M, Capolino F, Ragan R 2016 Nanotechnology 27 105302Google Scholar

    [8]

    Guo M, Huang L R, Liu W B, Ding J F 2021 Opt. Mater. 112 110802Google Scholar

    [9]

    Wang W D, Zheng L, Wang Y L 2020 Opt. Commun. 454 124516Google Scholar

    [10]

    Kong Y, Cao J J, Qian W C, Liu C, Wang S Y 2018 IEEE Photon. J. 10 1943Google Scholar

    [11]

    Zhang Y H, Liang Z Z, Meng D J, Qin Z, Fan Y D, Shi X Y, Smith D R, Hou E Z 2021 Results Phys. 24 104129Google Scholar

    [12]

    Brandl D W, Mirin N A, Nordlander P 2006 J. Phys. Chem. B 110 12302Google Scholar

    [13]

    Hopkins B, Poddubny A N, Miroshnichenko A E, Kivshar Y S 2013 Phys. Rev. A (Coll Park) 88 053819Google Scholar

    [14]

    Forestiere C, Negro L D, Miano G 2013 Phys. Rev. B 88 155411Google Scholar

    [15]

    Gomez D E, Vernon K C, Davis T J 2010 Phys. Rev. B 81 075414Google Scholar

    [16]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [17]

    Chen Q, Wang D, Gao F 2021 Opt. Lett. 46 1209Google Scholar

    [18]

    Ito T, Sakoda K 2001 Phys. Rev. B 64 045117Google Scholar

    [19]

    Crozier K B, Lousse V, Kilic O, Kim S, Fan S, Solgaard O 2006 Phys. Rev. B 73 115126Google Scholar

    [20]

    崔成聪 2020 博士学位论文 (武汉: 华中科技大学)

    Cui C C 2020 Ph. D. Dissertation (Wuhang: Huazhong University of Science and Technology) (in Chinese)

    [21]

    Kilic O, Digonnet M, Kino G, Solgaard O 2008 Opt. Express 16 13090Google Scholar

    [22]

    Nicolaou C, Lau W T, Gad R, Akhavan H, Schilling R, Levi O 2013 Opt. Express 21 31698Google Scholar

    [23]

    Fan S H 2002 Phys. Rev. B 65 235112Google Scholar

    [24]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260Google Scholar

    [25]

    Rajratan B, Atwood L J 2019 Opt. Express 27 282Google Scholar

    [26]

    Lee J, Zhen B, Chua S L, Qiu W J, Joannopoulos J D, Soljacic M, Shapira O 2012 Phys. Rev. Lett. 109 067401Google Scholar

    [27]

    Staude I, Schilling J 2017 Nat. Photonics 11 274Google Scholar

  • 图 1  晶格扰动介质纳米孔阵列超构表面模型表征 (a) 方形晶格原胞俯视图; (b) 晶格扰动原胞俯视图; (c) $ r = 80\;{\text{nm}} $时晶格扰动超构表面示意图

    Figure 1.  Schematic diagram of dielectric nanohole arrays metasurface with lattice-perturbed: (a) Top view of unit cell with square lattice; (b) top view of unit cell with lattice-perturbed; (c) schematic diagram of metasurface with lattice-perturbed of $ r = 80\;{\text{nm}} $.

    图 2  原胞与模场对称性 (a) 方形晶格(上)与晶格扰动(下)原胞的二维对称示意图; (b) 方形晶格超构表面的第一布里渊区; (c) y极化平面波($ {e_y} $)与x极化平面波($ {e_x} $)的模场对称性; (d) 方形晶格超构表面中6种本征模的对称性(同号区域对称, 异号区域反对称)

    Figure 2.  Symmetry of unit cell and mode field: (a) Two-dimensional symmetry operation for unit cell with square lattice(above) and lattice-perturbed (below); (b) the first Brillouin zone of square lattice metasurface; (c) symmetry of resonant mode field of $ {e_y} $and $ {e_x} $; (d) symmetry of six eigenmodes in lattice metasurface (areas with the same sign are symmetrical and areas with different signs are antisymmetric).

    图 3  方形晶格超构表面在$ {e_x} $正入射条件下的数值模拟结果 (a) 完整硅板、扇形孔与方孔超构表面的反射光谱对比图; (b), (c) FR1与FR2处的笛卡尔多极分解; (d) FR1(FR2)在xoy截面的归一化磁场(电场)分布$ \left| H \right| $($ \left| E \right| $)及xoz(yoz)截面的归一化电场(磁场)分布$ \left| E \right| $($ \left| H \right| $); (e) 完整硅板与扇形孔超构表面在xoy截面的归一化电磁场分布(以下场图中的白线框均表征结构轮廓); (f), (g) MD1与ED的概念描述图

    Figure 3.  Numerical simulation of square lattice metasurface under$ {e_x} $: (a) Reflectance spectrum comparison of metasurfaces with complete silicon block, scalloped holes and square holes; (b), (c) cartesian multipole decomposition of FR3, FR4 and FR5; (d) normalized magnetic(electric) field distributionin $ \left| H \right| $ ($ \left| E \right| $) in xoy section and normalized electric(magnetic) field distribution $ \left| E \right| $ ($ \left| H \right| $)in xoz (yoz) sectionof FR1(FR2); (e) normalized electromagnetic field distribution in xoy section of metasurface with complete silicon block, scalloped holes(white boxes in the following field diagrams is structural outline drawing); (f), (g) conceptual description of MD1 and ED.

    图 4  晶格扰动超构表面的反射光谱图与拟合曲线模型 (a) $ {e_x} $$ {e_y} $正入射条件下的反射光谱对比图; (b) $ {e_x} $正入射条件下FR1-FR5的拟合曲线

    Figure 4.  Reflection spectra and fitting curve model of lattice perturbed metasurface: (a) Comparison of reflectance spectrum under$ {e_x} $and$ {e_y} $; (b) fitting curve of FR1-FR5 under $ {e_x} $.

    图 5  晶格扰动超构表面在$ {e_x} $正入射条件下的近场分析与笛卡尔多极分解 (a)—(i) FR3, FR4与FR5在xoy截面的归一化电场分布$ \left| E \right| $yoz截面的归一化磁场分布$ \left| H \right| $及TD1, TD2与MD2的概念描述图; (j)—(l) FR3, FR4与FR5处的笛卡尔多极分解

    Figure 5.  Near-field analysis of lattice-perturbed metasurface under $ {e_x} $ and cartesian multipole decomposition: (a)–(i) Normalized electric field distribution $ \left| E \right| $ in xoy section and normalized magnetic field distribution $ \left| H \right| $ in yoz sectionof FR3, FR4 and FR5, and conceptual description of TD1, TD2 and MD2; (j)–(l) cartesian multipole decomposition of FR3, FR4 and FR5.

    图 6  晶格扰动超构表面在$ {e_y} $正入射条件下的近场分布 (a) 共振1(共振2)在xoy截面的归一化磁场(电场)分布$ \left| H \right| $($ \left| E \right| $)及yoz(xoz)截面的归一化电场(磁场)分布$ \left| E \right| $($ \left| H \right| $); (b) 共振1与共振2处的笛卡尔多极分解

    Figure 6.  Near-field distribution of lattice-perturbed metasurface under $ {e_y} $: (a) Normalized magnetic(electric) field distributionin $ \left| H \right| $ ($ \left| E \right| $) in xoy section and normalized electric(magnetic) field distribution $ \left| E \right| $ ($ \left| H \right| $) in yoz(xoz) sectionof resonance 1(resonance 2); (b) cartesian multipole decomposition of resonance 1 and resonance 2.

    表 1  ${C_{{\text{4v}}}}$点群的不可约表示的特征标表

    Table 1.  Character table of irreducible representations of ${C_{{\text{4v}}}}$ point group.

    $ {C_{{\text{4 v}}}} $E$ 2{C_4} $$ {C_2} $$ 2{\sigma _{\text{v}}} $$ {\text{2}}{\sigma _{\text{d}}} $
    $ {A_1} $11111
    $ {A_2} $111–1–1
    $ {B_1} $1–111–1
    $ {B_2} $1–11–11
    E20–200
    DownLoad: CSV

    表 2  表征Fano共振特性的主要参数值

    Table 2.  Main parameters that characterize the resonant properties of Fano.

    Parameter$ {\omega _{\text{0}}}/e{\text{V}} $$ \Gamma /{\rm{nm}} $FqQ
    $ {\lambda _{\text{1}}}= 1207.13\;{\text{nm}} $1.0272.920.257–1.550413
    $ {\lambda _{\text{2}}}= 1504.39\;{\text{nm}} $0.8246.570.2341.910229
    $ {\lambda _{\text{3}}}= 1074.80\;{\text{nm}} $1.1540.260.2211.5364134
    $ {\lambda _{\text{4}}} = 1093.35\;{\text{nm}} $1.1340.540.2561.1452025
    $ {\lambda _{\text{5}}}= 1577.74\;{\text{nm}} $0.7861.110.2851.4131421
    DownLoad: CSV
    Baidu
  • [1]

    鹿利单, 祝连庆, 曾周末, 崔一平, 张东亮, 袁配 2021 70 034204Google Scholar

    Lu L D, Zhu L Q, Zeng Z M, Cui Y P, Zhang D L, Yuan P 2021 Acta Phys. Sin. 70 034204Google Scholar

    [2]

    Tribelsky M I, Miroshnichenko A E 2016 Phys. Rev. A 93 053837Google Scholar

    [3]

    Kong X H, Xiao G B 2016 J. Opt. Soc. Am. A 33 707Google Scholar

    [4]

    Poddubny A N, Rybin M V, Limonov M F, Kivshar Y S 2012 Nat. Commun. 3 914Google Scholar

    [5]

    Rybin M V, Mingaleev S F, Limonov M F, Kivshar Y S 2016 Sci. Rep. 6 20599Google Scholar

    [6]

    Rybin M V, Khanikaev A B, Inoue M, Samusev K B, Steel M J, Yushin G, Limonov M F 2009 Phys. Rev. Lett. 103 023901Google Scholar

    [7]

    Sharac, N, Sharma H, Veysi M, Sanderson R N, Khine M, Capolino F, Ragan R 2016 Nanotechnology 27 105302Google Scholar

    [8]

    Guo M, Huang L R, Liu W B, Ding J F 2021 Opt. Mater. 112 110802Google Scholar

    [9]

    Wang W D, Zheng L, Wang Y L 2020 Opt. Commun. 454 124516Google Scholar

    [10]

    Kong Y, Cao J J, Qian W C, Liu C, Wang S Y 2018 IEEE Photon. J. 10 1943Google Scholar

    [11]

    Zhang Y H, Liang Z Z, Meng D J, Qin Z, Fan Y D, Shi X Y, Smith D R, Hou E Z 2021 Results Phys. 24 104129Google Scholar

    [12]

    Brandl D W, Mirin N A, Nordlander P 2006 J. Phys. Chem. B 110 12302Google Scholar

    [13]

    Hopkins B, Poddubny A N, Miroshnichenko A E, Kivshar Y S 2013 Phys. Rev. A (Coll Park) 88 053819Google Scholar

    [14]

    Forestiere C, Negro L D, Miano G 2013 Phys. Rev. B 88 155411Google Scholar

    [15]

    Gomez D E, Vernon K C, Davis T J 2010 Phys. Rev. B 81 075414Google Scholar

    [16]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [17]

    Chen Q, Wang D, Gao F 2021 Opt. Lett. 46 1209Google Scholar

    [18]

    Ito T, Sakoda K 2001 Phys. Rev. B 64 045117Google Scholar

    [19]

    Crozier K B, Lousse V, Kilic O, Kim S, Fan S, Solgaard O 2006 Phys. Rev. B 73 115126Google Scholar

    [20]

    崔成聪 2020 博士学位论文 (武汉: 华中科技大学)

    Cui C C 2020 Ph. D. Dissertation (Wuhang: Huazhong University of Science and Technology) (in Chinese)

    [21]

    Kilic O, Digonnet M, Kino G, Solgaard O 2008 Opt. Express 16 13090Google Scholar

    [22]

    Nicolaou C, Lau W T, Gad R, Akhavan H, Schilling R, Levi O 2013 Opt. Express 21 31698Google Scholar

    [23]

    Fan S H 2002 Phys. Rev. B 65 235112Google Scholar

    [24]

    Liu S D, Yang Z, Liu R P, Li X Y 2012 ACS Nano 6 6260Google Scholar

    [25]

    Rajratan B, Atwood L J 2019 Opt. Express 27 282Google Scholar

    [26]

    Lee J, Zhen B, Chua S L, Qiu W J, Joannopoulos J D, Soljacic M, Shapira O 2012 Phys. Rev. Lett. 109 067401Google Scholar

    [27]

    Staude I, Schilling J 2017 Nat. Photonics 11 274Google Scholar

  • [1] Liu Hui-Gang, Zhang Xiang-Yu, Nan Xue-Ying, Zhao Er-Gang, Liu Hai-Tao. All-dielectric metasurface two-parameter sensor based on quasi-bound states in continuum. Acta Physica Sinica, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [2] Jiang Le-Xin, Xie Zhen-Long, Guo Ze-Hong, Qiu Yi-Ning, Chen Yi-Hang. Mechanism study of all-dielectric metamaterial wideband reflector based on quasi-canonical mode. Acta Physica Sinica, 2023, 72(20): 204205. doi: 10.7498/aps.72.20230915
    [3] Chen Ying, Zhou Jian, Ding Zhi-Xin, Zhang Min, Zhu Qi-Guang. Analysis of formation and evolution of double Fano resonances in sub-wavelength dielectric grating/MDM waveguide/periodic photonic crystal. Acta Physica Sinica, 2022, 71(3): 034202. doi: 10.7498/aps.71.20211491
    [4] Yang Qi-Li, Zhang Xing-Fang, Liu Feng-Shou, Yan Xin, Liang Lan-Ju. Multiple Fano resonances in gold split ring disk dimers. Acta Physica Sinica, 2022, 71(2): 027802. doi: 10.7498/aps.71.20210855
    [5] Zhang Yue-Bin, Ma Cheng-Ju, Zhang Yao, Jin Jia-Sheng, Bao Shi-Qian, Li Mi, Li Dong-Ming. Research on analogue of electromagnetically induced transparency effect based on asymmetric structure all-dielectric metamaterial. Acta Physica Sinica, 2021, 70(19): 194201. doi: 10.7498/aps.70.20210070
    [6] Lu Li-Dan, Zhu Lian-Qing, Zeng Zhou-Mo, Cui Yi-Ping, Zhang Dong-Liang, Yuan Pei. Progress of silicon photonic devices-based Fano resonance. Acta Physica Sinica, 2021, 70(3): 034204. doi: 10.7498/aps.70.20200550
    [7] Guo Zhi-Wei, Guo Han-Bei, Wang Ting. Vibro-acoustic performance of acoustic metamaterial plate with periodic lateral local resonator. Acta Physica Sinica, 2021, 70(21): 214301. doi: 10.7498/aps.70.20210595
    [8] Analysis of Formation and Evolution of Double Fano Resonances in Sub-wavelength Dielectric Grating/MDM Waveguide/Periodic Photonic Crystal. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211491
    [9] Multiple Fano resonances in gold split ring disk dimers. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20210855
    [10] Chen Ying, Cao Jing-Gang, Xie Jin-Chao, Gao Xin-Bei, Xu Yang-Mei, Li Shao-Hua. Resonance characteristics of independently tuned dual Fano of metal-dielectric-metal waveguide coupling square cavity with double baffles. Acta Physica Sinica, 2019, 68(10): 107302. doi: 10.7498/aps.68.20181985
    [11] Li Meng-Jun, Fang Hui, Li Xiao-Ming, Yuan Xiao-Cong. Subgroup decomposition analyses of D3h and D4h plasmonic metamolecule Fano resonance spectrum. Acta Physica Sinica, 2016, 65(5): 057302. doi: 10.7498/aps.65.057302
    [12] Xu Chang-Wei, Zhu Feng, Liu Li-Na, Niu Da-Peng. Application of group theory in the problem of electromagnetic scattering of symmetry structures. Acta Physica Sinica, 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [13] Liu Ran, Shi Jin-Hui, Plum Eric, Fedotov Vassili, Zheludev Nikolay. Tuning Fano resonances in a planar metamaterial. Acta Physica Sinica, 2012, 61(15): 154101. doi: 10.7498/aps.61.154101
    [14] Yang Shi-Lin, Huang Yong-Chang, Huang Chang-Yu, Song Jia-Min, He Bin. Causal algebra and its applications to physics. Acta Physica Sinica, 2011, 60(2): 020201. doi: 10.7498/aps.60.020201
    [15] Hu Kun-Ming. Discussion on the transformation property between the configuration wavefunction of the equivalent-electron and the Young tableau. Acta Physica Sinica, 2005, 54(10): 4524-4525. doi: 10.7498/aps.54.4524
    [16] Yang Zheng, Shi Yi, Liu Fa, Zhang Rong, Zheng You-Dou. Group theory for carbon nanotubes and a series of novel point groups*. Acta Physica Sinica, 2004, 53(12): 4299-4302. doi: 10.7498/aps.53.4299
    [17] Zhang Hai-Tao, Gong Ma-Li, Wang Dong-Sheng, Li Wei, Zhao Da-Zun. Applications of group theory to calculations of photonic band gap. Acta Physica Sinica, 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
    [18] GUO YONG, GU BING-LIN. UNIVERSALITY OF RESONANT SPLITTING IN SUPERLATTICES. Acta Physica Sinica, 1999, 48(9): 1733-1744. doi: 10.7498/aps.48.1733
    [19] HAN HE-XIANG, WANG ZHAO-PING, LI GUO-HUA, JIANG DE-SHENG, K. PLOOG. NEAR RESONANT RAMAN SCATTERING FROM GaAs/AlAs SUPERLATTICES. Acta Physica Sinica, 1992, 41(4): 661-667. doi: 10.7498/aps.41.661
    [20] YI HU-CHUN, ZHU MIN, YANG DA-ZHI. GROUP THEORETICAL DETERMINATION OF TWIN BOUNDARIES IN R-PHASE AND MARTENSITE OF Ni-Ti SHAPE MEMORY ALLOY. Acta Physica Sinica, 1988, 37(8): 1376-1380. doi: 10.7498/aps.37.1376
Metrics
  • Abstract views:  3907
  • PDF Downloads:  112
  • Cited By: 0
Publishing process
  • Received Date:  23 December 2021
  • Accepted Date:  27 January 2022
  • Available Online:  10 February 2022
  • Published Online:  20 May 2022

/

返回文章
返回
Baidu
map