Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Causal algebra and its applications to physics

Yang Shi-Lin Huang Yong-Chang Huang Chang-Yu Song Jia-Min He Bin

Citation:

Causal algebra and its applications to physics

Yang Shi-Lin, Huang Yong-Chang, Huang Chang-Yu, Song Jia-Min, He Bin
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • A causal algebra and its application to high energy physics is proposed. Firstly on the basis of quantitative causal principle, we propose both a causal algebra and a causal decomposition algebra. Using the causal decomposition algebra, the associative law and the identity are deduced, and it is inferred that the causal decomposition algebra naturally contains the structures of group. Furthermore, the applications of the new algebraic systems are given in high energy physics. We find that the reactions of particles of high energy belonging neither to the group nor to the ring, and the causal algebra and the causal decomposition algebra are rigorous tools exactly describing real reactions of particle physics. A general unified expression (with multiplicative or additive property) of different quantities of interactions between different particles is obtained. Using the representation of the causal algebra and supersymmetric R number, the supersymmetric PR=(-1 )R invariance of multiplying property in the reactions of containing supersymmetric particles is obtained. Furthermore, a symmetric relation between any components of electronic spin is obtained, with the help of which one can simplify the calculation of interactions of many electrons. The reciprocal eliminable condition to define general inverse elements is used, which may renew the definition of the group and make the number of axioms of group reduced to three by eliminating a superabundant definition.
    [1]

    Cornwell J A 1984 Group Theory In Physics (Vol.Ⅰ,Ⅱ) (London: Academic Press)

    [2]

    Huang Y C, Lee X G, Shao M X 2006 Mod. Phys. Lett. A 21 1107

    [3]

    Huang Y C, Weng G 2005 Commun. Theor. Phys. 44 757

    [4]

    Huang Y C, Lin B L 2002 Phys. Lett. A 299 644

    [5]

    Huang Y C, Yu C X 2007 Phys. Rev. D 75 044011

    [6]

    Xiong Q Y 1994 Modern Algebra (Wuhan: Wuhan University Press)

    [7]

    Sholander M 1959 Am. Math. Month. 66 93

    [8]

    Michel S, Single A 1961 Am. Math. Month. 68 346

    [9]

    Burris S, Sankappanavar H P 1981 A Course in Universal Algebra (Berlin: Springer-Verlag)

    [10]

    Kobayashi S, Nomizu K 1969 Foundations of Differential Geometry (Vol.Ⅰ,Ⅱ.) (Tokyo: Interscience)

    [11]

    Husemoller D 1975 Fibre Bundles (Berlin: Springer-Verlag)

    [12]

    Nash C, Sen S 1983 Topology and Geometry for Physicists (London: Academic Press)

    [13]

    Chern S S 1988 Vector Bundles With a Connection, Studies in Global Differential Geometry, Mathematical Association of America.

    [14]

    Yang S L 1998 Algebra Colloquium 5 459

    [15]

    Xiao J, Yang S L 2001 Algebras and Representation Theory 4 491

    [16]

    Otto Nachtmann 1990 Elementary Particle Physics—Concepts and Phenomena (Translated by A. Lahee and W. Wetzel, Berlin: Springer-Verlag)

    [17]

    Kolb E W, Turner M S 1990 The Early Universe (New York: Addison-Wesley Publishing Company)

    [18]

    Linde A D 1990 Particle Physics and Inflationary Cosmology (Berkshire: Harwood Academic publishers)

    [19]

    Llewellyn Smith C H 1982 Physics Reports 24 1

    [20]

    Sergio Ferrara 1987 Supersymmetry (Amsterdam: Elsevier Science Pub. Co.)

    [21]

    Polchinski J 1998 String Theory, Vol.Ⅰ, Ⅱ (New York: Cambridge University Press);Davies P C W, Brown J 1988 Superstrings (Cambridge:Cambridge University Press)

    [22]

    Green M B, Schwarz J H, Witten E 1988 Superstring Theory (Cambridge: Cambridge University Press)

    [23]

    Dong W S, Huang B X 2010 Acta Phys. Sin. 59 1 (in Chinese) [董文山、黄宝歆 2010 59 1]

    [24]

    Jia L Q, Cui J C, Zhang Y Y, Luo S K 2009 Acta Phys. Sin. 58 16 (in Chinese) [崔金超、贾利群、罗绍凯、张耀宇 2009 58 16]

    [25]

    Fang J H, Liu Y K 2008 Acta Phys. Sin. 57 6699 (in Chinese) [方建会、刘仰魁 2008 57 6699]

    [26]

    Wang C, Zhang K, Zhou L B 2008 Acta Phys. Sin. 57 6718 (in Chinese) [王 策、张 凯、周利斌 2008 57 6718]

    [27]

    Zhang Y 2009 Chin. Phys. B 18 4636

    [28]

    Lin P, Fang J, Pang T 2008 Chin. Phys. B 17 4361

  • [1]

    Cornwell J A 1984 Group Theory In Physics (Vol.Ⅰ,Ⅱ) (London: Academic Press)

    [2]

    Huang Y C, Lee X G, Shao M X 2006 Mod. Phys. Lett. A 21 1107

    [3]

    Huang Y C, Weng G 2005 Commun. Theor. Phys. 44 757

    [4]

    Huang Y C, Lin B L 2002 Phys. Lett. A 299 644

    [5]

    Huang Y C, Yu C X 2007 Phys. Rev. D 75 044011

    [6]

    Xiong Q Y 1994 Modern Algebra (Wuhan: Wuhan University Press)

    [7]

    Sholander M 1959 Am. Math. Month. 66 93

    [8]

    Michel S, Single A 1961 Am. Math. Month. 68 346

    [9]

    Burris S, Sankappanavar H P 1981 A Course in Universal Algebra (Berlin: Springer-Verlag)

    [10]

    Kobayashi S, Nomizu K 1969 Foundations of Differential Geometry (Vol.Ⅰ,Ⅱ.) (Tokyo: Interscience)

    [11]

    Husemoller D 1975 Fibre Bundles (Berlin: Springer-Verlag)

    [12]

    Nash C, Sen S 1983 Topology and Geometry for Physicists (London: Academic Press)

    [13]

    Chern S S 1988 Vector Bundles With a Connection, Studies in Global Differential Geometry, Mathematical Association of America.

    [14]

    Yang S L 1998 Algebra Colloquium 5 459

    [15]

    Xiao J, Yang S L 2001 Algebras and Representation Theory 4 491

    [16]

    Otto Nachtmann 1990 Elementary Particle Physics—Concepts and Phenomena (Translated by A. Lahee and W. Wetzel, Berlin: Springer-Verlag)

    [17]

    Kolb E W, Turner M S 1990 The Early Universe (New York: Addison-Wesley Publishing Company)

    [18]

    Linde A D 1990 Particle Physics and Inflationary Cosmology (Berkshire: Harwood Academic publishers)

    [19]

    Llewellyn Smith C H 1982 Physics Reports 24 1

    [20]

    Sergio Ferrara 1987 Supersymmetry (Amsterdam: Elsevier Science Pub. Co.)

    [21]

    Polchinski J 1998 String Theory, Vol.Ⅰ, Ⅱ (New York: Cambridge University Press);Davies P C W, Brown J 1988 Superstrings (Cambridge:Cambridge University Press)

    [22]

    Green M B, Schwarz J H, Witten E 1988 Superstring Theory (Cambridge: Cambridge University Press)

    [23]

    Dong W S, Huang B X 2010 Acta Phys. Sin. 59 1 (in Chinese) [董文山、黄宝歆 2010 59 1]

    [24]

    Jia L Q, Cui J C, Zhang Y Y, Luo S K 2009 Acta Phys. Sin. 58 16 (in Chinese) [崔金超、贾利群、罗绍凯、张耀宇 2009 58 16]

    [25]

    Fang J H, Liu Y K 2008 Acta Phys. Sin. 57 6699 (in Chinese) [方建会、刘仰魁 2008 57 6699]

    [26]

    Wang C, Zhang K, Zhou L B 2008 Acta Phys. Sin. 57 6718 (in Chinese) [王 策、张 凯、周利斌 2008 57 6718]

    [27]

    Zhang Y 2009 Chin. Phys. B 18 4636

    [28]

    Lin P, Fang J, Pang T 2008 Chin. Phys. B 17 4361

  • [1] Chen Ying, Li Mei-Jie, Zhao Meng, Wang Jian-Kun. Group theory based formation mechanism and evolution of multiple Fano resonances in dielectric nanohole arrays with lattice-perturbed. Acta Physica Sinica, 2022, 71(10): 107801. doi: 10.7498/aps.71.20212375
    [2] Zhou Nian-Jie, Huang Wei-Qi, Miao Xin-Jian, Wang Gang, Dong Tai-Ge, Huang Zhong-Mei, Yin Jun. Effects of quantum confinement and symmetry on the silicon photonic crystal band gap. Acta Physica Sinica, 2015, 64(6): 064208. doi: 10.7498/aps.64.064208
    [3] Xu Chang-Wei, Zhu Feng, Liu Li-Na, Niu Da-Peng. Application of group theory in the problem of electromagnetic scattering of symmetry structures. Acta Physica Sinica, 2013, 62(16): 164102. doi: 10.7498/aps.62.164102
    [4] Zhang Yi, Xue Yun, Ge Wei-Kuan. Symmetries and conserved quantities of the Rosenberg problem. Acta Physica Sinica, 2010, 59(7): 4434-4436. doi: 10.7498/aps.59.4434
    [5] Ding Guang-Tao. Hojman method for construction of Birkhoffian representation and the Birkhoff symmetry. Acta Physica Sinica, 2010, 59(6): 3643-3647. doi: 10.7498/aps.59.3643
    [6] Ding Guang-Tao. Effects of gauge transformations on symmetries of Birkhoffian system. Acta Physica Sinica, 2009, 58(11): 7431-7435. doi: 10.7498/aps.58.7431
    [7] Lu Kai, Fang Jian-Hui, Zhang Ming-Jiang, Wang Peng. Noether symmetry and Mei symmetry of discrete holonomic system in phase space. Acta Physica Sinica, 2009, 58(11): 7421-7425. doi: 10.7498/aps.58.7421
    [8] Zhang Yi. Lie symmetries and adiabatic invariants for holonomic systems in event space. Acta Physica Sinica, 2007, 56(6): 3054-3059. doi: 10.7498/aps.56.3054
    [9] Zhang Yi, Fan Cun-Xin, Mei Feng-Xiang. Perturbation of symmetries and Hojman adiabatic invariants for Lagrangian system. Acta Physica Sinica, 2006, 55(7): 3237-3240. doi: 10.7498/aps.55.3237
    [10] Zheng Shi-Wang, Fu Jing-Li, Li Xian-Hui. Momentum-dependent symmetries and non-Noether conserved quantities for mechanico-electrical systems. Acta Physica Sinica, 2005, 54(12): 5511-5516. doi: 10.7498/aps.54.5511
    [11] Wu Hui-Bin, Mei Feng-Xiang. Symmetries of Lagrange system subjected to gyroscopic forces. Acta Physica Sinica, 2005, 54(6): 2474-2477. doi: 10.7498/aps.54.2474
    [12] Lou Zhi-Mei. Parametric orbit equation and symmetries of classical particle in the field of noncentral force. Acta Physica Sinica, 2005, 54(4): 1460-1463. doi: 10.7498/aps.54.1460
    [13] Huang Yong-Chang, Li Xi-Guo. Unification of different integral variational principles. Acta Physica Sinica, 2005, 54(8): 3473-3479. doi: 10.7498/aps.54.3473
    [14] Luo Shao-Kai. Mei symmetry,Noether symmetry and Lie symmetry of Hamiltonian canonical equations in a singular system. Acta Physica Sinica, 2004, 53(1): 5-10. doi: 10.7498/aps.53.5
    [15] Yang Zheng, Shi Yi, Liu Fa, Zhang Rong, Zheng You-Dou. Group theory for carbon nanotubes and a series of novel point groups*. Acta Physica Sinica, 2004, 53(12): 4299-4302. doi: 10.7498/aps.53.4299
    [16] Zhang Hai-Tao, Gong Ma-Li, Wang Dong-Sheng, Li Wei, Zhao Da-Zun. Applications of group theory to calculations of photonic band gap. Acta Physica Sinica, 2004, 53(7): 2060-2064. doi: 10.7498/aps.53.2060
    [17] Zhang Yi. Effects of non-conservative forces and nonholonomic constraints on Lie symmetrie s of a Hamiltonian system. Acta Physica Sinica, 2003, 52(6): 1326-1331. doi: 10.7498/aps.52.1326
    [18] Zhang Yi, Mei Feng-Xiang. Perturbation to symmetries and adiabatic invariant for systems of generalized c lassical mechanics. Acta Physica Sinica, 2003, 52(10): 2368-2372. doi: 10.7498/aps.52.2368
    [19] Zhang Yi. . Acta Physica Sinica, 2002, 51(3): 461-464. doi: 10.7498/aps.51.461
    [20] Zhang Yi. . Acta Physica Sinica, 2002, 51(8): 1666-1670. doi: 10.7498/aps.51.1666
Metrics
  • Abstract views:  10152
  • PDF Downloads:  743
  • Cited By: 0
Publishing process
  • Received Date:  02 February 2009
  • Accepted Date:  18 May 2010
  • Published Online:  05 January 2011

/

返回文章
返回
Baidu
map