-
报道了一种采用双端泵浦的Nd3+离子掺杂MgO:LiNbO3正交偏振双波长激光器, 并对正交偏振双波长激光输出进行调控. 基于晶体的偏振荧光光谱, 对1084与1093 nm的双波长激光振荡机理进行分析, 建立晶体热透镜焦距与受激发射截面比之间的关系, 并推导出1084及1093 nm双波长共振区间, 给出通过改变谐振腔腔型结构调控双波长激光输出的方法. 在实验中采用813 nm的半导体激光器双端泵浦a切的Nd:MgO:LiNbO3晶体, 测量了1084与1093 nm两种波长的输出规律, 并对输出波长进行调控. 最终得到了6.02 W的1093 nm和3.02 W的1084 nm单波长激光输出, 在X, Y方向上的光束质量分别为
$ M_X^2 $ = 1.70和$ M_Y^2 $ = 1.81. 在28 W泵浦注入功率下获得了4.58 W的双波长激光输出, 实验结果与理论分析相符合. 为正交偏振双波长的可控输出及应用奠定了理论和实验基础.-
关键词:
- 1084/1093 nm双波长 /
- Nd:MgO:LiNbO3 /
- 正交偏振 /
- 波长调控
In this paper, an orthogonally polarized dual-wavelength laser based on dual-end pumped Nd3+ doped MgO:LiNbO3 is reported. Besides, the output wavelength of the orthogonally polarized dual-wavelength is regulated. According to the crystal character, the polarized fluorescence spectrum of the crystal is chosen as the starting point. The oscillation mechanism of the dual-wavelength Nd3+ doped MgO:LiNbO3 laser at 1084 nm and 1093 nm is analyzed theoretically. The relationship between the focal length of the crystal thermal lens and the stimulated emission cross-sectional ratio is established, and the effects of different temperatures on the output of single-wavelength Nd3+ doped MgO:LiNbO3 laser and on the output of dual-wavelength Nd3+ doped MgO:LiNbO3 laser are analyzed. In addition, The single-wavelength output region of 1084 nm and 1093 nm are derived respectively, and the mixed dual-wavelength working area at 1084 nm and 1093 nm are also given. The influences of different resonator parameters on the output dual-wavelength Nd3+ doped MgO:LiNbO3 laser are analyzed. It is worth mentioning that a method of adjusting the output of dual-wavelength laser by changing the resonant cavity structure is given. In the experiment, a-cut Nd:MgO:LiNbO3 crystal is double-end pumped by an semiconductor laser, of which the output wavelength is 813 nm. The output law of the two wavelengths of 1084 nm and 1093 nm is summarized. The output wavelength is regulated. When the laser cavity is not inserted by other optical elements, the maximum output power of 4.58 W at 1084 nm/1093 nm dual-wavelength laser under the pump power is 28 W and the pure single-wavelength laser maximum output power of 3.02 W at 1084 nm and 6.02 W at 1093 nm are obtained. The beam quality factor in the X- and Y-direction are$ M_X^2 $ = 1.70 and$ M_Y^2 $ = 1.81, respectively. The experimental results are in agreement with the theoretical analysis results. According to the change of the resonator parameters, the 1084 nm and 1093 nm pure single-wavelength laser alternate output and orthogonal polarization dual-wavelength laser synchronous output are achieved based on the Nd3+ doped MgO:LiNbO3 laser, thus establishing a theoretical and experimental foundation for the controllable output and application of orthogonal polarization dual-wavelength. It greatly expand the application range of dual-wavelength laser which can control the orthogonal polarization of 1084/1093 nm.-
Keywords:
- dual-wavelength of 1084 nm and 1093 nm /
- Nd:MgO:LiNbO3 /
- orthogonal polarization /
- regulating wavelength
[1] Walsh B M 2010 Laser Phys. 20 622Google Scholar
[2] Zhang Z L, Liu Q, Nie M M, Ji E C, Gong M L 2015 Appl. Phys. B 20 689Google Scholar
[3] Cheng H P, Liu Y C, Huang T L, Liang H C, Chen Y F 2018 Photonics Res. 6 815Google Scholar
[4] Duan X M, Li L J, Shen Y J, Yao B Q, Wang Y Z 2018 Appl. Opt. 57 8102Google Scholar
[5] Zhang P, Tan Y D, Liu N, Wu Y, Zhang S L 2013 Opt. Lett. 38 4296Google Scholar
[6] Liang H C, Wu C S 2017 Opt. Express 26 13697Google Scholar
[7] Zhang X L, Zhang S, Wang C Y, Li L, Zhao J Q, Cui J H 2013 Opt. Express 21 22699Google Scholar
[8] Xu B, Wang Y, Lin Z L, Cui S W, Cheng Y J, Xu H Y, Cai Z P 2016 Appl. Opt. 55 42Google Scholar
[9] 刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 57 230Google Scholar
Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230Google Scholar
[10] Lu Y F, Zhang J, Xia J, Liu H L 2014 IEEE Photonics Technol. Lett. 26 656Google Scholar
[11] Thévenin J, Vallet M, Brunel M 2012 Opt. Lett. 37 2859Google Scholar
[12] Tuan P H, Tsai M C, Chen Y F 2017 Opt. Express 25 29000Google Scholar
[13] Tu Z H, Dai S B, Yin H, Zhu S Q 2019 Opt. Express 27 32949Google Scholar
[14] Qi J, Liu C, Dai C, Liu L, Wang X Z 2019 Laser Phys. 29 115001Google Scholar
[15] Fan M Q, Li T, Zhao S Z, Li G Q, Li D C, Yang K J, Qiao W C, Li S X 2016 Opt. Mater. 53 209Google Scholar
[16] Wang Y H, Yu Y J, Sun D H, Liu H, Liu H Y, Li S T, Wu C T, Jin G Y 2019 Opt. Laser Technol. 119 105570Google Scholar
[17] Cordova-Plaza A, Fan T Y, Digonnet M J F, Byer R L, Shaw H J 1988 Opt. Lett. 13 209Google Scholar
[18] Burlot R, Moncorgé R, Manaa H, Boulon G, Guyot Y, Garcia Solé J, Cochet-Muchy D 1996 Opt. Mater. 6 313Google Scholar
[19] De Almeida José M M M, Leite António M P P, Amin J 2000 Proc. SPIE 3942 232Google Scholar
[20] Cox L J 1977 Opt. Acta Int. J. Opt. 24 995Google Scholar
[21] 赫光生, 刘凤兰, 朱大庆 1978 激光 5 6Google Scholar
He G S, Liu F L, Zhu D Q 1978 Chin. J. Lasers 5 6Google Scholar
-
表 1 谐振腔模拟参数
Table 1. Parameters of cavity simulation.
编号 M1曲率 M2曲率/mm 谐振腔长度/mm 1 ∞ 300 70 2 ∞ 300 100 3 ∞ 150 100 表 2 Nd:MgO:LiNbO3晶体的正交偏振双波长激光器镀膜参数
Table 2. Coating parameters of orthogonal polarization dual-wavelength laser based on Nd:MgO:LiNbO3 crystal.
编号 材质 膜系参数 M1 K9 1084 nm@HR, 813 nm@HT M2 K9 1084 nm@AR (T = 6%, 10%, 15%) BS1 K9 45° 1084 nm@HR, 813 nm@HT P K9 1080—1090 nm 45°偏振膜 注: HR代表高反射率, HT代表高透射率. -
[1] Walsh B M 2010 Laser Phys. 20 622Google Scholar
[2] Zhang Z L, Liu Q, Nie M M, Ji E C, Gong M L 2015 Appl. Phys. B 20 689Google Scholar
[3] Cheng H P, Liu Y C, Huang T L, Liang H C, Chen Y F 2018 Photonics Res. 6 815Google Scholar
[4] Duan X M, Li L J, Shen Y J, Yao B Q, Wang Y Z 2018 Appl. Opt. 57 8102Google Scholar
[5] Zhang P, Tan Y D, Liu N, Wu Y, Zhang S L 2013 Opt. Lett. 38 4296Google Scholar
[6] Liang H C, Wu C S 2017 Opt. Express 26 13697Google Scholar
[7] Zhang X L, Zhang S, Wang C Y, Li L, Zhao J Q, Cui J H 2013 Opt. Express 21 22699Google Scholar
[8] Xu B, Wang Y, Lin Z L, Cui S W, Cheng Y J, Xu H Y, Cai Z P 2016 Appl. Opt. 55 42Google Scholar
[9] 刘欢, 姚建铨, 郑芳华, 路洋, 王鹏 2008 57 230Google Scholar
Liu H, Yao J Q, Zheng F H, Lu Y, Wang P 2008 Acta Phys. Sin. 57 230Google Scholar
[10] Lu Y F, Zhang J, Xia J, Liu H L 2014 IEEE Photonics Technol. Lett. 26 656Google Scholar
[11] Thévenin J, Vallet M, Brunel M 2012 Opt. Lett. 37 2859Google Scholar
[12] Tuan P H, Tsai M C, Chen Y F 2017 Opt. Express 25 29000Google Scholar
[13] Tu Z H, Dai S B, Yin H, Zhu S Q 2019 Opt. Express 27 32949Google Scholar
[14] Qi J, Liu C, Dai C, Liu L, Wang X Z 2019 Laser Phys. 29 115001Google Scholar
[15] Fan M Q, Li T, Zhao S Z, Li G Q, Li D C, Yang K J, Qiao W C, Li S X 2016 Opt. Mater. 53 209Google Scholar
[16] Wang Y H, Yu Y J, Sun D H, Liu H, Liu H Y, Li S T, Wu C T, Jin G Y 2019 Opt. Laser Technol. 119 105570Google Scholar
[17] Cordova-Plaza A, Fan T Y, Digonnet M J F, Byer R L, Shaw H J 1988 Opt. Lett. 13 209Google Scholar
[18] Burlot R, Moncorgé R, Manaa H, Boulon G, Guyot Y, Garcia Solé J, Cochet-Muchy D 1996 Opt. Mater. 6 313Google Scholar
[19] De Almeida José M M M, Leite António M P P, Amin J 2000 Proc. SPIE 3942 232Google Scholar
[20] Cox L J 1977 Opt. Acta Int. J. Opt. 24 995Google Scholar
[21] 赫光生, 刘凤兰, 朱大庆 1978 激光 5 6Google Scholar
He G S, Liu F L, Zhu D Q 1978 Chin. J. Lasers 5 6Google Scholar
计量
- 文章访问数: 4284
- PDF下载量: 60
- 被引次数: 0