搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gd靶激光等离子体6.7nm光源的实验研究

窦银萍 谢卓 宋晓林 田勇 林景全

引用本文:
Citation:

Gd靶激光等离子体6.7nm光源的实验研究

窦银萍, 谢卓, 宋晓林, 田勇, 林景全

Experimental research on laser-produced Gd target plasma source for 6.7 nm lithography

Dou Yin-Ping, Xie Zhuo, Song Xiao-Lin, Tian Yong, Lin Jing-Quan
PDF
导出引用
  • 本文对Gd靶激光等离子体极紫外光源进行了实验研究, 在 6.7 nm附近获得了较强的辐射, 并研究了6.7 nm 附近光辐射随打靶激光功率密度变化的规律以及收集角度对极紫外辐射的影响. 同时, 对平面Gd靶激光等离子光源的离子碎屑角分布进行了测量, 发现从靶面的法线到沿着靶面平行方向上Gd离子数量依次减少. 进一步研究结果表明采用0.9 T外加磁场的条件下可取得较好的Gd 离子碎屑阻挡效果.
    Extreme ultraviolet (EUV) lithography at λ =6.7 nm is a challenging subject for next generation semiconductor lithography beyond 13.5 nm. The availability of strong radiation at the operating wavelength and low-debris of the plasma source are the two most important aspects for the development of laser-produced Gd plasma source at 6.7 nm. In this paper, experimental research on the extreme ultraviolet source based on the laser-produced Gd plasma is performed. Strong radiation near 6.7 nm from the source has been obtained, which is attributed to the n=4-n=4 transitions in Gd ions that overlap to yield an intense unresolved transition array (UTA). Dependence of spectral variation near the strong emission region of Gd plasma on the incident laser power density and detection angles is given. It is found that the intensity of EUV radiation around 6.7 nm is increased with increasing laser power density, and the emission peak around 7.1 nm increases faster than that of emission peak around 6.7 nm after the laser intensity reaching 6.4×1011 W/cm2, which is ascribed to the unique spectroscopic behavior of Gd ions. In addition, the energy of the ion debris from laser-produced Gd plasma source as well as the angular distribution of the ion yield off the target normal are measured with Faraday cup. Results show that the ion energy corresponding to the peak position of Gd ion energy distribution is about 2.6 keV at 10° off the target normal, and the yield of Gd ions decreases with the increase of the angle from the target normal. Furthermore, the stopping ability of an ambient magnetic field for ion debris from laser Gd plasma source is evaluated, and the result shows that the energetic Gd ion can be effectively mitigated by applying a 0.9 T magnetic field.
      通信作者: 林景全, linjingquan@cust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61178022)和长春市科技局项目(批准号: 14KP007)资助的课题.
      Corresponding author: Lin Jing-Quan, linjingquan@cust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61178022), and the Science & Technology Department of Changchun City, China (Grant No. 14KP007).
    [1]

    Uwe Stamm 2004 J. Phys. D:Appl. Phys. 37 3244

    [2]

    Cai Y, Wang W T, Yang M, Liu J S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100 (in Chinese) [蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 57 5100]

    [3]

    Chen H, Lan H, Chen Z Q, Liu L N, Wu T, Zuo D L, Lu P X, Wang X B 2015 Acta Phys. Sin. 64 075202 (in Chinese) [陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵 2015 64 075202]

    [4]

    Koshelev K, Krivtsun V, Gayasov R, Yakushev O, Chekmarev A, Banine V, Glushkov D, Yakunin A International Workshop on EUV Sources 2010 Dublin, IrelandNov13-15

    [5]

    Wang H C, Wang Z S, Li F S, Qin S J, Du Y, Wang L, Zhang Z, Chen L Y 2004 Acta Phys. Sin. 53 2368 (in Chinese) [王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕 2004 53 2368]

    [6]

    Platonov Y 2010 Intl. Workshop on EUV Source 2010 Dublin, Ireland, Nov. 13-15 p31

    [7]

    Benschop J 2010 Proceedings of the 2010 International Workshop on EUVL Maui, HI

    [8]

    Li B, Otsuka T, Higashiguchi T, Yugami N, Jiang W, Endo A, Dunne P, O'Sullivan G 2012 Appl. Phys. Lett. 101 013112

    [9]

    Cummins T, Otsuka T, Yugami N, Jiang W, Endo A, Li B, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Higashiguchi T 2012 Appl. Phys. Lett. 100 06118

    [10]

    O'Sullivan G, Carroll P K 1981 J. Opt. Soc. Am. 71 227

    [11]

    Churilov S S, Kildiyarova R R, Ryabtsev A N, Sadovsky S V 2009 Phys. Scr. 80 045303

    [12]

    Otsuka T, Kilbane D, White J, Higashiguchi T, Yugami N, Yatagai T, Jiang W, Endo A, Dunne P, O'Sullivan G 2010 Appl. Phys. Lett. 97 111503

    [13]

    Morris O, O' Reilly F, Dunne P, Hayden P 2008 Appl. Phys. Lett. 92 231503

    [14]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202

    [15]

    Suzuki C, Koike F, Murakami I, Tamura N, Sudo S, O'Gorman C, Li B, Harte C S, Donnelly T, O'Sullivan G 2013 Phys. Scr. 156 014078

    [16]

    Sugar J, Kaufman V, Rowan W L 1993 J. Opt. Soc. Am. B 10 1321

    [17]

    Sugar J, Kaufman V 1981 Phys. Scr. 24 742

    [18]

    Sugar J, Kaufman V, Rowan W L 1993 J. Opt. Soc. Am. B 10 799

    [19]

    Sugar J 1972 Phys. Rev. B 5 1785

    [20]

    Richter M, Meyer M, Pahler M, Presher T, Raven E V, Sonntag B, Wetzel H E 1989 Phys. Rev. A 40 7007

    [21]

    Harilal S S, O'Shay B, Tao Y, Tillack M S 2007 Appl. Phys. B 86 547

  • [1]

    Uwe Stamm 2004 J. Phys. D:Appl. Phys. 37 3244

    [2]

    Cai Y, Wang W T, Yang M, Liu J S, Lu P X, Li R X, Xu Z Z 2008 Acta Phys. Sin. 57 5100 (in Chinese) [蔡懿, 王文涛, 杨明, 刘建胜, 陆培祥, 李儒新, 徐至展 2008 57 5100]

    [3]

    Chen H, Lan H, Chen Z Q, Liu L N, Wu T, Zuo D L, Lu P X, Wang X B 2015 Acta Phys. Sin. 64 075202 (in Chinese) [陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵 2015 64 075202]

    [4]

    Koshelev K, Krivtsun V, Gayasov R, Yakushev O, Chekmarev A, Banine V, Glushkov D, Yakunin A International Workshop on EUV Sources 2010 Dublin, IrelandNov13-15

    [5]

    Wang H C, Wang Z S, Li F S, Qin S J, Du Y, Wang L, Zhang Z, Chen L Y 2004 Acta Phys. Sin. 53 2368 (in Chinese) [王洪昌, 王占山, 李佛生, 秦树基, 杜芸, 王利, 张众, 陈玲燕 2004 53 2368]

    [6]

    Platonov Y 2010 Intl. Workshop on EUV Source 2010 Dublin, Ireland, Nov. 13-15 p31

    [7]

    Benschop J 2010 Proceedings of the 2010 International Workshop on EUVL Maui, HI

    [8]

    Li B, Otsuka T, Higashiguchi T, Yugami N, Jiang W, Endo A, Dunne P, O'Sullivan G 2012 Appl. Phys. Lett. 101 013112

    [9]

    Cummins T, Otsuka T, Yugami N, Jiang W, Endo A, Li B, O'Gorman C, Dunne P, Sokell E, O'Sullivan G, Higashiguchi T 2012 Appl. Phys. Lett. 100 06118

    [10]

    O'Sullivan G, Carroll P K 1981 J. Opt. Soc. Am. 71 227

    [11]

    Churilov S S, Kildiyarova R R, Ryabtsev A N, Sadovsky S V 2009 Phys. Scr. 80 045303

    [12]

    Otsuka T, Kilbane D, White J, Higashiguchi T, Yugami N, Yatagai T, Jiang W, Endo A, Dunne P, O'Sullivan G 2010 Appl. Phys. Lett. 97 111503

    [13]

    Morris O, O' Reilly F, Dunne P, Hayden P 2008 Appl. Phys. Lett. 92 231503

    [14]

    Dou Y P, Sun C K, Liu C Z, Gao J, Hao Z Q, Lin J Q 2014 Chin. Phys. B 23 075202

    [15]

    Suzuki C, Koike F, Murakami I, Tamura N, Sudo S, O'Gorman C, Li B, Harte C S, Donnelly T, O'Sullivan G 2013 Phys. Scr. 156 014078

    [16]

    Sugar J, Kaufman V, Rowan W L 1993 J. Opt. Soc. Am. B 10 1321

    [17]

    Sugar J, Kaufman V 1981 Phys. Scr. 24 742

    [18]

    Sugar J, Kaufman V, Rowan W L 1993 J. Opt. Soc. Am. B 10 799

    [19]

    Sugar J 1972 Phys. Rev. B 5 1785

    [20]

    Richter M, Meyer M, Pahler M, Presher T, Raven E V, Sonntag B, Wetzel H E 1989 Phys. Rev. A 40 7007

    [21]

    Harilal S S, O'Shay B, Tao Y, Tillack M S 2007 Appl. Phys. B 86 547

  • [1] 阮远东, 章志昊, 贾茳勰, 顾煜宁, 张善端, 崔旭高, 洪葳, 白彦峥, 田朋飞. 空间引力波探测中电荷管理系统的紫外光源应用.  , 2024, 73(22): 220401. doi: 10.7498/aps.73.20241115
    [2] 骆炎, 余璇, 雷建廷, 陶琛玉, 张少锋, 朱小龙, 马新文, 闫顺成, 赵晓辉. 极紫外光源及高荷态离子诱导下甲烷的脱氢通道碎裂机制.  , 2024, 73(4): 044101. doi: 10.7498/aps.73.20231377
    [3] 李慧, 谭芳蕊, 尹皓玉, 马钺洋, 吴晓斌. 基于匀光管的极紫外消相干和光强均匀化仿真研究.  , 2024, 73(11): 114201. doi: 10.7498/aps.73.20240335
    [4] 高城, 刘彦鹏, 严冠鹏, 闫杰, 陈小棋, 侯永, 靳奉涛, 吴建华, 曾交龙, 袁建民. 局域热平衡Sn等离子体极紫外辐射不透明度和发射谱的理论研究.  , 2023, 72(18): 183101. doi: 10.7498/aps.72.20230455
    [5] 司明奇, 温智琳, 张齐进, 窦银萍, 李博超, 宋晓伟, 谢卓, 林景全. 低密度SnO2靶激光等离子体极紫外光及离带热辐射.  , 2023, 72(6): 065201. doi: 10.7498/aps.72.20222385
    [6] 雷建廷, 余璇, 史国强, 闫顺成, 孙少华, 王全军, 丁宝卫, 马新文, 张少锋, 丁晶洁. 基于极紫外光的Ne, Xe原子电离.  , 2022, 71(14): 143201. doi: 10.7498/aps.71.20220341
    [7] 张文敏, 张凌, 程云鑫, 王正汹, 胡爱兰, 段艳敏, 周天富, 刘海庆. EAST等离子体Mo V-Mo XVIII极紫外光谱的识别.  , 2022, 71(11): 115203. doi: 10.7498/aps.71.20212383
    [8] 唐传祥, 邓秀杰. 稳态微聚束加速器光源.  , 2022, 71(15): 152901. doi: 10.7498/aps.71.20220486
    [9] 谢卓, 温智琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射.  , 2022, 71(3): 035202. doi: 10.7498/aps.71.20211450
    [10] 谢卓, 温志琳, 司明奇, 窦银萍, 宋晓伟, 林景全. 双激光脉冲打靶形成Gd等离子体的极紫外光谱辐射研究.  , 2021, (): . doi: 10.7498/aps.70.20211450
    [11] 海帮, 张少锋, 张敏, 董达谱, 雷建廷, 赵冬梅, 马新文. 桌面飞秒极紫外光原子超快动力学实验装置.  , 2020, 69(23): 234208. doi: 10.7498/aps.69.20201035
    [12] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应.  , 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [13] 杨增强, 张力达. 红外激光载波包络相位对氦原子的极紫外光(XUV)吸收谱的量子调控研究.  , 2015, 64(13): 133203. doi: 10.7498/aps.64.133203
    [14] 陈鸿, 兰慧, 陈子琪, 刘璐宁, 吴涛, 左都罗, 陆培祥, 王新兵. 脉冲激光辐照液滴锡靶等离子体极紫外辐射的实验研究.  , 2015, 64(7): 075202. doi: 10.7498/aps.64.075202
    [15] 卢发铭, 夏元钦, 张盛, 陈德应. 飞秒强激光脉冲驱动Ne高次谐波蓝移产生相干可调谐极紫外光实验研究.  , 2013, 62(2): 024212. doi: 10.7498/aps.62.024212
    [16] 赵永蓬, 徐强, 肖德龙, 丁宁, 谢耀, 李琦, 王骐. Xe介质极紫外光源时间特性及最佳条件研究.  , 2013, 62(24): 245204. doi: 10.7498/aps.62.245204
    [17] 蔡 懿, 王文涛, 杨 明, 刘建胜, 陆培祥, 李儒新, 徐至展. 基于强激光辐照固体锡靶产生极紫外光源的实验研究.  , 2008, 57(8): 5100-5104. doi: 10.7498/aps.57.5100
    [18] 黄文忠, 何绍堂, 孔令华, 韩红军, 方泉玉, 陈国兴. 锗等离子体远紫外光谱研究.  , 1994, 43(7): 1066-1071. doi: 10.7498/aps.43.1066
    [19] 王文书, 李赞良, 黄矛. CT-6B托卡马克等离子体的真空紫外光谱.  , 1987, 36(6): 712-716. doi: 10.7498/aps.36.712
    [20] 王永昌, E. JANNITTI, G. TONDELLO. 对等离子体中谱线的斯塔克增宽的真空紫外光谱观测.  , 1985, 34(8): 1049-1055. doi: 10.7498/aps.34.1049
计量
  • 文章访问数:  6634
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-04-03
  • 修回日期:  2015-07-13
  • 刊出日期:  2015-12-05

/

返回文章
返回
Baidu
map