-
The plasmonic anisotropic nanostructure possesses the enhanced surface electric field and unique optical properties in near-infrared spectrum, thus it has potential applications in nano-optoelectronics and medical sensing. To obtain the best property, the excitation polarization normally needs to match the orientation of the structure. The strong polarization dependence, however, greatly limits the excitation efficiency. In this work, a patchy structure is introduced to release the dependence of polarization. In the proposed method here in this work, the lost properties due to unmatched polarizations are compensated for by the plasmonic resonance coupling between the patch and capped structure in the heterozygous dimer. By overlapping the two modes at the same wavelength, the absorption keeps rather stable undisturbed status during the variation of incident polarization. This work focuses on the theoretical exploration of the feasibility. Electromagnetic field in the interaction between light and heterozygous dimer is essential before extinction coefficient is calculated. The field of the model is obtained by solving Maxwell equations through using the finite element method. The numerical calculation presents a good understanding of the mechanism of the plasmonic interactions in the dimer, based on which the nanostructure with optimized configuration parameters can achieve the stable and high absorption in the near infrared wavelength.
-
Keywords:
- localized surface plasmon resonance /
- capped structure /
- polarization /
- finite-element method
[1] Petryayeva E, Krull U J 2011 Anal. Chim. Acta 706 8Google Scholar
[2] Zhang X, Chen Y L, Liu R S, Tsai D P 2013 Rep. Prog. Phys. 76 046401Google Scholar
[3] Mayer K M, Hafner J H L 2011 Chem. Rev. 111 3828Google Scholar
[4] Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60Google Scholar
[5] LiuY, Huang W, Chen W, Wang X, Guo J, Tian H, Zhang H, Wang Y, Yu B, Ren T L 2019 Appl. Surf. Sci. 481 1127Google Scholar
[6] MaX, Sun H, Wang Y, Wu X, Zhang J 2018 Nano Energy 53 932Google Scholar
[7] Sarah U, Ian B, He J, Laura S 2015 Sensors 15 15684Google Scholar
[8] Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S 2019 Biosensors 9 78Google Scholar
[9] Mejía-Salazar J R, Oliveira O N 2018 Chem. Rev. 118 10617Google Scholar
[10] Cobley C, Chen J, Cho E, Wang L, Xia Y 2010 Chem. Soc. Rev. 40 44Google Scholar
[11] He M Q, Yu Y L, Wang J H 2020 Nano Today 35 101005Google Scholar
[12] Ren Q Q, Bai L Y, Zhang X S, Ma Z Y, Bo L, Zhao Y D, Cao Y C 2015 J. Nanomater. 2015 1Google Scholar
[13] Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S 2008 Cancer Lett. 269 57Google Scholar
[14] AustinL A, Mackey M A, Dreaden E C, El-Sayed M A 2014 Arch. Toxicol. 88 1391Google Scholar
[15] Lin H C, Hsu K F, Lai C L, Wu T C, Lai C H 2020 Molecules 25 1853Google Scholar
[16] Sun M, Lee, Joon H, Kim, You J, Ha, Nyun Y, Park, Kon S, Beom Y 2013 ACS Nano 7 50Google Scholar
[17] Qin Z, Bischof J C 2012 Chem.Soc.Rev 41 1191Google Scholar
[18] Mie G 1908 Ann. Phys. 330 337Google Scholar
[19] Kelly K L, E C oronado, Lin L Z, Schatz G C 2003 J. Phys. Chem. B 107 668Google Scholar
[20] Kabashin A V, Evans P, Pastkovsky S, HenDren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867Google Scholar
[21] Kenneth, Grattan, Tong, Sun, Jie, Cao 2014 Sensors and Actuators, B. Chemical 195 332Google Scholar
[22] Nehl C L, Liao H, Hafner J H 2006 Nano Lett. 6 683Google Scholar
[23] Kumar R, Badilescu S, Packirisamy M 2019 J. Nanosci. Nanotechnol. 19 4617Google Scholar
[24] Lee D, Yoon S 2015 J. Phys. Chem. C 119 7873Google Scholar
[25] Boerigter C, Campana R, Morabito M 2015 Nat. Commun. 7 10545Google Scholar
[26] Funston A M, Novo C, Davis T J, Mulvanet P 2009 Nano Lett. 9 1651Google Scholar
[27] Zhu X P, Chen Y Q, Shi H M, Zhang S, Liu Q H, Duan H G 2017 J. Appl. Phys. 121 213105Google Scholar
[28] Cui Y, Zhou J, Tamma V A, Park W 2012 ACS Nano 6 2385Google Scholar
[29] Lovera A, Gallinet B, Nordlander P, Martin O J F 2013 ACS Nano 7 4527Google Scholar
[30] Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P, Halas N J 2010 Nano Lett. 10 3184Google Scholar
[31] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Nnichsen C, Giessen H 2010 Nano Lett. 10 1103Google Scholar
[32] Dijk M A V, Tchebotareva A L, Orrit M, Lippitz M, Lounis B 2006 Phys. Chem. Chem. Phys. 8 3486Google Scholar
[33] Gans R, Über D 1912 Ann. Phys. 342 881Google Scholar
[34] Ye J, Dorpe P V, Roy W V, Lodewijks K, Vlaminck I D, Maes G, Borghs G 2009 J. Phys. Chem. C 113 3110Google Scholar
[35] Nordlander P, Oubre C 2004 Nano Lett. 4 899Google Scholar
[36] Kerker M 1985 J. Colloid Interface Sci. 105 297Google Scholar
[37] Knight M W, Halas N J 2008 New J. Phys. 10 119Google Scholar
[38] Chen Q, Qi H, Ren Y T, Sun J P, Ruan L M 2017 AIP Adv. 7 065115Google Scholar
[39] Lassiter J B, Knight M W, Mirin N A, Halas N J 2009 Nano Lett. 9 4326Google Scholar
[40] 洪昕, 王晨晨 2018 光学学报 38 0524001Google Scholar
Hong X, Wang C C 2018 Acta Opti. Sin. 38 0524001Google Scholar
[41] Ye J, Kong Y, Liu C 2016 J. Phys. D:Appl. Phys. 49 205106Google Scholar
[42] Cortie M, Ford M 2007 Nanotechnology 18 235704Google Scholar
[43] 洪昕 2020 中国专利 ZL202010038295.7
Hong X 2020 Chinese Patent CN111204705A (in Chinese)
-
图 2 芯壳结构纳米单颗粒的LSPR 振动模式 (a) 线偏振光激发下的芯壳结构单颗粒的吸收谱线; (b) 715 nm峰值吸收谱线上的电场分布, 插图中的电荷极化分布图表明该振动为电偶极子模式; (c) 在吸收谱线600 nm处的电场分布, 插图中的电荷极化分布图表明该振动为四极子模式
Figure 2. Plasmonic resonance mode of an individual core-shell nano-structure:(a) The absorption spectrum excited by a linear polarization; (b) the electric field distribution at 715 nm is a dipolar mode indicated by the charge distribution shown in the inset; (c) the electric field distribution at 600 nm is a quadripolar mode indicated by the charge distribution shown in the inset.
图 3 芯帽结构纳米单颗粒的LSPR 振动模式 (a) 线偏振光激发下芯帽结构单颗粒的吸收谱线随偏振方向的变化曲线; (b)对应谱线615 nm处的电场分布, 插图中的电荷极化分布图表明该振动模式为电偶极子; (c) 对应谱线840 nm处的电场分布集中在帽沿上, 插图中电荷极化分布图表明该模式受激于平行于帽沿平面的电场; (d) 对应谱线670 nm处的电场分布和电荷极化分布, 表明该模式为四极子模式
Figure 3. Plasmonic resonance mode of an individual capped nano-structure: (a) The absorption spectrum variation with polarization rotating from 0° to 90°; (b) the electric field distribution at 615 nm is a dipolar mode indicated by the charge distribution shown in the inset; (c) at 840 nm, the resonance is known as a magnetic mode with electric field accumulated at the brim, while the charge distribution in the inset indicates the polarization direction along the brim; (d) the electric field distribution at 670 nm is a quadripolar mode indicated by the charge distribution shown in the inset.
图 4 芯帽-芯壳异构二聚体的LSPR耦合作用 (a)在线偏振光激发下二聚体颗粒的吸收谱线随偏振方向旋转的变化关系; (b) 对应谱线峰值845 nm处0°电场激发下的异构体的电场分布及电荷极化分布; (c) 异构体间隙A点处电场随激发光偏振方向旋转的变化谱线; (d) 对应谱线峰值850 nm处90°电场激发下异构体的电场分布及电荷极化分布; (e) 帽沿B点处电场随偏振方向的变化谱线; (f) 对应谱线730 nm处异构体间LSPR耦合作用的电场及电荷极化分布图
Figure 4. Plasmonic interaction between the patch/capped structures in the heterozygous dimer: (a) Excited by linear polarization, the absorption spectrum variation with polarization rotation; (b) at 845 nm, the “hot spot” at the gap in the electric field distribution shows the strong plasmonic coupling between the two modes, as shown in the inset; (c) the electric field at the point A of gap varies with the polarization direction; (d) at 850 nm, the strong electric field is contributed by the capped structure and the distribution at the brim clearly indicates the magnetic mode when the polarization is 90°; (e) the spectrum variation at point B on the brim with polarization rotation from 0° to 90°; (f) at 730 nm, the electric field distribution clear shows the shell dominates the contribution.
图 5 芯帽异构二聚体的近红外吸收性能 (a) 芯帽异构二聚体与芯帽单颗粒的近红外吸收性能对偏振态依赖关系的对比; (b) 芯帽异构二聚体在空间随机角度入射下产生稳定的高吸收
Figure 5. Absorption properties of the heterozygous dimer at near infrared: (a) The dimer exhibits a rather “flat” line compared to the individual capped structure during the polarization rotation; (b) with random incident angle, the dimer still keeps a stable high absorption at the near infrared wavelength when the polarization rotates.
-
[1] Petryayeva E, Krull U J 2011 Anal. Chim. Acta 706 8Google Scholar
[2] Zhang X, Chen Y L, Liu R S, Tsai D P 2013 Rep. Prog. Phys. 76 046401Google Scholar
[3] Mayer K M, Hafner J H L 2011 Chem. Rev. 111 3828Google Scholar
[4] Lim D K, Jeon K S, Kim H M, Nam J M, Suh Y D 2010 Nat. Mater. 9 60Google Scholar
[5] LiuY, Huang W, Chen W, Wang X, Guo J, Tian H, Zhang H, Wang Y, Yu B, Ren T L 2019 Appl. Surf. Sci. 481 1127Google Scholar
[6] MaX, Sun H, Wang Y, Wu X, Zhang J 2018 Nano Energy 53 932Google Scholar
[7] Sarah U, Ian B, He J, Laura S 2015 Sensors 15 15684Google Scholar
[8] Loiseau A, Asila V, Boitel-Aullen G, Lam M, Salmain M, Boujday S 2019 Biosensors 9 78Google Scholar
[9] Mejía-Salazar J R, Oliveira O N 2018 Chem. Rev. 118 10617Google Scholar
[10] Cobley C, Chen J, Cho E, Wang L, Xia Y 2010 Chem. Soc. Rev. 40 44Google Scholar
[11] He M Q, Yu Y L, Wang J H 2020 Nano Today 35 101005Google Scholar
[12] Ren Q Q, Bai L Y, Zhang X S, Ma Z Y, Bo L, Zhao Y D, Cao Y C 2015 J. Nanomater. 2015 1Google Scholar
[13] Dickerson E B, Dreaden E C, Huang X, El-Sayed I H, Chu H, Pushpanketh S 2008 Cancer Lett. 269 57Google Scholar
[14] AustinL A, Mackey M A, Dreaden E C, El-Sayed M A 2014 Arch. Toxicol. 88 1391Google Scholar
[15] Lin H C, Hsu K F, Lai C L, Wu T C, Lai C H 2020 Molecules 25 1853Google Scholar
[16] Sun M, Lee, Joon H, Kim, You J, Ha, Nyun Y, Park, Kon S, Beom Y 2013 ACS Nano 7 50Google Scholar
[17] Qin Z, Bischof J C 2012 Chem.Soc.Rev 41 1191Google Scholar
[18] Mie G 1908 Ann. Phys. 330 337Google Scholar
[19] Kelly K L, E C oronado, Lin L Z, Schatz G C 2003 J. Phys. Chem. B 107 668Google Scholar
[20] Kabashin A V, Evans P, Pastkovsky S, HenDren W, Wurtz G A, Atkinson R, Pollard R, Podolskiy V A, Zayats A V 2009 Nat. Mater. 8 867Google Scholar
[21] Kenneth, Grattan, Tong, Sun, Jie, Cao 2014 Sensors and Actuators, B. Chemical 195 332Google Scholar
[22] Nehl C L, Liao H, Hafner J H 2006 Nano Lett. 6 683Google Scholar
[23] Kumar R, Badilescu S, Packirisamy M 2019 J. Nanosci. Nanotechnol. 19 4617Google Scholar
[24] Lee D, Yoon S 2015 J. Phys. Chem. C 119 7873Google Scholar
[25] Boerigter C, Campana R, Morabito M 2015 Nat. Commun. 7 10545Google Scholar
[26] Funston A M, Novo C, Davis T J, Mulvanet P 2009 Nano Lett. 9 1651Google Scholar
[27] Zhu X P, Chen Y Q, Shi H M, Zhang S, Liu Q H, Duan H G 2017 J. Appl. Phys. 121 213105Google Scholar
[28] Cui Y, Zhou J, Tamma V A, Park W 2012 ACS Nano 6 2385Google Scholar
[29] Lovera A, Gallinet B, Nordlander P, Martin O J F 2013 ACS Nano 7 4527Google Scholar
[30] Lassiter J B, Sobhani H, Fan J A, Kundu J, Capasso F, Nordlander P, Halas N J 2010 Nano Lett. 10 3184Google Scholar
[31] Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Nnichsen C, Giessen H 2010 Nano Lett. 10 1103Google Scholar
[32] Dijk M A V, Tchebotareva A L, Orrit M, Lippitz M, Lounis B 2006 Phys. Chem. Chem. Phys. 8 3486Google Scholar
[33] Gans R, Über D 1912 Ann. Phys. 342 881Google Scholar
[34] Ye J, Dorpe P V, Roy W V, Lodewijks K, Vlaminck I D, Maes G, Borghs G 2009 J. Phys. Chem. C 113 3110Google Scholar
[35] Nordlander P, Oubre C 2004 Nano Lett. 4 899Google Scholar
[36] Kerker M 1985 J. Colloid Interface Sci. 105 297Google Scholar
[37] Knight M W, Halas N J 2008 New J. Phys. 10 119Google Scholar
[38] Chen Q, Qi H, Ren Y T, Sun J P, Ruan L M 2017 AIP Adv. 7 065115Google Scholar
[39] Lassiter J B, Knight M W, Mirin N A, Halas N J 2009 Nano Lett. 9 4326Google Scholar
[40] 洪昕, 王晨晨 2018 光学学报 38 0524001Google Scholar
Hong X, Wang C C 2018 Acta Opti. Sin. 38 0524001Google Scholar
[41] Ye J, Kong Y, Liu C 2016 J. Phys. D:Appl. Phys. 49 205106Google Scholar
[42] Cortie M, Ford M 2007 Nanotechnology 18 235704Google Scholar
[43] 洪昕 2020 中国专利 ZL202010038295.7
Hong X 2020 Chinese Patent CN111204705A (in Chinese)
Catalog
Metrics
- Abstract views: 3578
- PDF Downloads: 40
- Cited By: 0