-
The new phase grating based on two-dimensional structured thin films is reported. The rigorous coupled-wave analysis (RCWA) is employed to calculate the diffraction efficiency which varies with incident wavelength and angle. According to the result obtained by using RCWA, when the wavelength ranges from 600 to 640 nm, TE mode and TM mode can be diffracted in the transmitted 0th and ±1st orders, respectively, at normal incident angle. For example, at the wavelength of 633 nm, the polarization extinction ratio of 0th order is I0,TE/I0,TM=109.8, and the polarization extinction ratio of ±1st order is I±1,TM/I±1,TE =334.6. This polarizing beam splitting phenomenon is confirmed by theoretical simulation with finite-difference time-domain method, which shows that TE mode and TM mode can be separated by an angle of about 10°in glass substrate. The same simulation method is performed for the diffraction at incident angle of 23° in order to compare with the results from RCWA and grating equation calculation.
-
Keywords:
- polarization /
- structured thin films /
- phase grating
[1] Bayanheshig, Qi X D, Tang Y G 2003 Acta Phys. Sin. 52 1157 (in Chinese) [巴音贺希格、齐向东、唐玉国 2003 52 1157]
[2] E83-C 912
[3] Poulin J, Kashyap R 2005 Opt. Express 13 4414
[4] Clausnitzer T, Kmpfe T, Kley E B, Tünnermann A 2005 Opt. Express 13 10448
[5] Clausnitzer T, Kmpfe T, Kley E B 2007 Appl. Opt. 46 819
[6] Zheng J J, Zhou C H, Wang B 2008 J. Opt. Soc. Am. A 25 1075
[7] Zheng J J, Zhou C H, Feng J J 2009 Opt. Commun. 282 3069
[8] Botten L C, Craig M S, McPhedran R C 1981 Opt. Acta 28 413
[9] Liu J, Gao H, Zhou J 2008 Opt. Laser Technol. 41 622
[10] Liu S Q, Chen Y S 1995 Opt. Lett. 20 1832
[11] Hanaizumi O, Miura K, Saito M 2000 IEICE Trans. Electron.
[12] Li Y Y, Gu P F, Li M Y 2005 Acta Phys. Sin. 54 3889 (in Chinese) [厉以宇、顾培夫、李明宇 2005 54 3889]
[13] Li Y Y, Gu P F, Li M Y 2006 Acta Phys. Sin. 55 2596 (in Chinese) [厉以宇、顾培夫、李明宇 2006 55 2596]
[14] Li Y Y, Li M Y, Gu P F 2008 Appl. Opt. 47 C70
[15] Chang T H, Chen S H, Lee C C 2008 Thin Solid Films 516 1051
[16] Huang C Y, Ku H M, Chao S 2009 Appl. Opt. 48 69
[17] Yeh Y W, Chang T H, Chen S H 2009 Opt. Rew. 16 222
[18] Zhao H J, Yang S L, Zhang D 2009 Acta Phys. Sin. 58 6236 (in Chinese) [赵华君、杨守良、张 东 2009 58 6236]
-
[1] Bayanheshig, Qi X D, Tang Y G 2003 Acta Phys. Sin. 52 1157 (in Chinese) [巴音贺希格、齐向东、唐玉国 2003 52 1157]
[2] E83-C 912
[3] Poulin J, Kashyap R 2005 Opt. Express 13 4414
[4] Clausnitzer T, Kmpfe T, Kley E B, Tünnermann A 2005 Opt. Express 13 10448
[5] Clausnitzer T, Kmpfe T, Kley E B 2007 Appl. Opt. 46 819
[6] Zheng J J, Zhou C H, Wang B 2008 J. Opt. Soc. Am. A 25 1075
[7] Zheng J J, Zhou C H, Feng J J 2009 Opt. Commun. 282 3069
[8] Botten L C, Craig M S, McPhedran R C 1981 Opt. Acta 28 413
[9] Liu J, Gao H, Zhou J 2008 Opt. Laser Technol. 41 622
[10] Liu S Q, Chen Y S 1995 Opt. Lett. 20 1832
[11] Hanaizumi O, Miura K, Saito M 2000 IEICE Trans. Electron.
[12] Li Y Y, Gu P F, Li M Y 2005 Acta Phys. Sin. 54 3889 (in Chinese) [厉以宇、顾培夫、李明宇 2005 54 3889]
[13] Li Y Y, Gu P F, Li M Y 2006 Acta Phys. Sin. 55 2596 (in Chinese) [厉以宇、顾培夫、李明宇 2006 55 2596]
[14] Li Y Y, Li M Y, Gu P F 2008 Appl. Opt. 47 C70
[15] Chang T H, Chen S H, Lee C C 2008 Thin Solid Films 516 1051
[16] Huang C Y, Ku H M, Chao S 2009 Appl. Opt. 48 69
[17] Yeh Y W, Chang T H, Chen S H 2009 Opt. Rew. 16 222
[18] Zhao H J, Yang S L, Zhang D 2009 Acta Phys. Sin. 58 6236 (in Chinese) [赵华君、杨守良、张 东 2009 58 6236]
Catalog
Metrics
- Abstract views: 7633
- PDF Downloads: 625
- Cited By: 0