Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on Chinese stock market crash early warning based on improved log-periodic power law model

Wu Jun-Chuan Tang Zhen-Peng Du Xiao-Xu Chen Kai-Jie

Citation:

Research on Chinese stock market crash early warning based on improved log-periodic power law model

Wu Jun-Chuan, Tang Zhen-Peng, Du Xiao-Xu, Chen Kai-Jie
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • This paper is based on the famous log-periodic power law model (LPPL) in financial physics to warn of the collapse of China's Shanghai Composite Index and GEM Index in June 2015. In view of the existing research using the LPPL model to warn of market crash, only the historical trading data of the market are considered. For the first time, investor sentiment factors are incorporated into the modeling process of LPPL model to improve the early warning effect of LPPL model. Using the text mining technology combined with semantic analysis methods to grasp the financial media's stock evaluation report for word frequency statistics, in order to build the medium sentiment index. The further modified expression of the crash probability function in the LPPL model is represented as a function of historical trading data and medium sentiment, and thus constructing an LPPL-MS combination model to warn of stock market crash. The empirical results show that the LPPL-MS combination model constructed in this paper has higher warning accuracy than the LPL model, and its prediction crash time is closer to the actual crash time of the Shanghai Index and GEM Index, and its fitting results have passed the relevant test.
      Corresponding author: Tang Zhen-Peng, zhenpt@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 71573042, 71973028)
    [1]

    Sornette D, Johansen A, Bouchaud J P 1995 J. Phys. I. 6 167Google Scholar

    [2]

    Johansen A, Sornette D 1999 Risk. 12 91

    [3]

    Jensen M C 1967 Financ. Anal. J. 23 77

    [4]

    Fama U 1965 J. Bus. 38 34Google Scholar

    [5]

    蒋志强, 田婧雯, 周炜星 2019 管理科学学报 22 92Google Scholar

    Jiang Z Q, Tian J W, Zhou W X 2019 J. Manag. Sci. China 22 92Google Scholar

    [6]

    徐翔, 朱承, 朱先强 2021 70 088901Google Scholar

    Xu X, Zhu C, Zhu X Q 2021 Acta Phys. 70 088901Google Scholar

    [7]

    Gurkaynak R S 2008 J. Econ. Sury. 22 166Google Scholar

    [8]

    Bak P, Tang C, Wiesenfeld K 1987 Phys. Rev. Lett. 59 381Google Scholar

    [9]

    潘娜, 王子剑, 周勇 2018 中国管理科学 26 25Google Scholar

    Pan N, Wang Z J, Zhou Y 2018 Chin. J. Manag. Sci. 26 25Google Scholar

    [10]

    周炜星 2007 金融物理学导论 (上海: 上海财经大学出版社) 第17—33页

    Zhou W X 2007 Introduction of Econophysics (Shang-hai: Shanghai University of Finance and Economics Press) pp17–33 (in Chinese)

    [11]

    Sornette D, Johansen A 1997 Physica A 245 411Google Scholar

    [12]

    Sornette D, Johansen A 1998 Physica A 261 581Google Scholar

    [13]

    Sornette D, Zhou W X 2006 Int. J. Forecast 22 153Google Scholar

    [14]

    Sornette D, Woodard R, Zhou W X 2009 Physica A 388 1571Google Scholar

    [15]

    Kyriazis N, Papadamou S, Corbet S 2020 Res. Int. Bus. Financ. 54 101254Google Scholar

    [16]

    Omer O 2020 Eur. Phys. J. Spec. Top. 229 1715Google Scholar

    [17]

    Sirca S J, Omladic M 2020 ARS Math. Contemp. 13 63

    [18]

    Filimonov V, Sornette D 2013 Physica A 392 3698Google Scholar

    [19]

    Jiang Z, Zhou W X, Sornette D, et al. 2010 J. Econ. Behav. Organ. 74 149Google Scholar

    [20]

    Yan W, Rebib R, Woodard R, Sornette D 2012 IJPAM. 1 59Google Scholar

    [21]

    李东 2012 淮海工学院学报(自然科学版) 21 4

    Li D 2012 J. Huaihai Insti of Tech. (Natural Science Edition) 21 4

    [22]

    周伟, 何建敏 2011 金融研究 375 65

    Zhou W, He J M 2011 J. Financ. Res. 375 65

    [23]

    李斯嘉, 李冬昕, 王粟旸 2017 上海经济研究 7 42

    Li S J, Li D X, Wang L Y 2017 Shanghai J. Econ. 7 42

    [24]

    李伦一, 张翔 2019 金融研究 474 169

    Li L Y, Zhang X 2019 J. Financ. Res. 474 169

    [25]

    陈卫华, 蔡文靖 2018 统计与决策 497 143Google Scholar

    Chen W H, Cai W J 2018 Statistics and Decision 497 143Google Scholar

    [26]

    赵磊, 刘庆 2020 统计与决策 558 128Google Scholar

    Zhao L, Liu Q 2020 Statistics and Decision 558 128Google Scholar

    [27]

    Kahneman D 2003 Am. Econ. Rev. 93 1449Google Scholar

    [28]

    Baker M, Wurgler J 2006 J. Financ. 61 1645Google Scholar

    [29]

    Baker M, Wurgler J 2007 J. Econ. Perspect 21 129Google Scholar

    [30]

    García D 2013 J. Financ. 68 1267Google Scholar

    [31]

    Fang L, Peress J 2009 J. Financ. 64 2023Google Scholar

    [32]

    Barber B M, Odean T 2008 Rev. Financ. Stud. 21 785Google Scholar

    [33]

    Solomon D H 2012 J. Financ. 67 599Google Scholar

    [34]

    Nardo M, Petracco-Giudici M, Naltsidis M 2016 J. Econ. Surv. 30 356Google Scholar

    [35]

    Fisher K L, Statman M 2000 Financ. Anal. J. 56 16Google Scholar

    [36]

    武佳薇, 汪昌云, 陈紫琳, Jie Michael Guo 2020 金融研究 476 147

    Wu J W, Wang C Y, Chen Z L, Jie M G 2020 J. Financ. Res. 476 147

    [37]

    李合龙, 冯春娥 2014 系统工程理论与实践 34 2495Google Scholar

    Li H L, Feng C E 2014 System Eng. Theor. Prac. 34 2495Google Scholar

    [38]

    游家兴, 吴静 2012 经济研究 534 141

    You J X, Wu J 2012 Econ. Res. J 534 141

    [39]

    Wu D D, Zheng L, Olson D L 2014 IEEE T. SYST Man CY-S. 44 1077Google Scholar

    [40]

    戴德宝, 兰玉森, 范体军, 赵敏 2019 中国软科学 340 166Google Scholar

    Dai D B, Lan Y S, Fan T J, Zhao M 2019 China Soft Sci. 340 166Google Scholar

    [41]

    Martin G 1971 In Computers, Communication, and the Public Interest (Baltimore, MD: The Johns Hopkins Press) p37

    [42]

    Da Z, Engelberg J, Gao P 2011 J. Financ. 66 1461Google Scholar

    [43]

    Huang X, Nekrasov A, Teoh S H 2018 Account. Rev. 93 231Google Scholar

    [44]

    Sentiment Analysis, Bian S B, Jia D K, Li F http://dx.doi.org/10.2139/ssrn.3446388 [2020-11-10]

    [45]

    王晓丹, 尚维, 汪寿阳 2019 系统工程理论与实践 39 3038Google Scholar

    Wang X D, Shang W, Wang S Y 2019 System Eng. Theor. Prac. 39 3038Google Scholar

    [46]

    Johansen A, Ledoit O, Sornette D. 2000 Int J Theor Appl Finan. 3 219Google Scholar

    [47]

    Yan W F, Woodard R, Sornette D 2014 Quant. Financ. 14 1273Google Scholar

    [48]

    Lin L, Sornette D 2013 Eur. J. Financ. 19 344Google Scholar

  • 图 1  上证指数2015年泡沫期间LPPL拟合图

    Figure 1.  LPPL fitting diagram of the Shanghai stock exchange (SSE) index during the 2015 bubble.

    图 2  部分财经媒体评论稿标题信息样本

    Figure 2.  Some financial media commentary title information samples.

    图 3  上证指数、创业板指数泡沫前后走势

    Figure 3.  Trend of SSE index and growth enterprise market (GEM) index before and after bubble.

    图 4  上证指数、创业板指数不同模型预测表现比较分析

    Figure 4.  Comparative analysis of forecasting performance of different models of Shanghai Stock Exchange Index and Growth Enterprise Market Index.

    表 1  CFSD词典部分积极、消极词汇

    Table 1.  Some positive and negative words in CFSD dictionary.

    序号积极词汇消极词汇
    1突破拖累
    2增长不涨反跌
    3高涨分化
    4火爆沉重打击
    5赚钱恐慌
    6上升下降
    7一枝独秀狂跌
    8蒸蒸日上跌停板
    9活跃退市
    10提速暴涨暴跌
    DownLoad: CSV

    表 2  (MS)序列描述性统计分析

    Table 2.  Descriptive statistical analysis of media sentiment(MS) sequence.

    最大值最小值均值标准差偏度峰度
    1.794–0.9980.2520.4460.0373.158
    DownLoad: CSV

    表 3  上证指数LPPL, LPPL-MS参数估计结果

    Table 3.  Parameter estimation results of SSE index LPPL and LPPL-MS.

    MSEABCmωϕλ$ {t_{\text{c}}} $
    LPPL0.99710.131–0.864–0.0170.18812.0981.748369.022
    1.07810.161–0.828–0.0150.19711.9911.840379.036
    1.1129.949–0.8050.0140.18810.3682.029361.668
    LPPL-MS0.9489.639–0.562–0.0140.22612.3986.6860.008362.729
    0.9919.597–0.509–0.0130.24012.9113.7170.007365.669
    1.0389.552–0.508–0.0120.23712.9533.6710.010360.949
    DownLoad: CSV

    表 4  创业板指数LPPL、LPPL-MS参数估计结果

    Table 4.  Estimation results of LPPL and LPPL-MS parameters of gem index.

    MSEABCmωϕλ$ {t_{\text{c}}} $
    LPPL2.4298.444–0.3340.0060.23913.9882.241335.923
    2.4438.654–0.436–0.0150.21713.0093.989341.826
    2.4778.517–0.355–0.0110.23613.0393.998340.435
    LPPL-MS2.7038.617–0.3950.0110.22915.2420.2880.015344.122
    2.8199.218–0.7660.0160.17416.4455.3200.010352.216
    2.9048.922–0.5590.0100.20021.7170.2560.010353.759
    DownLoad: CSV

    表 5  上证指数、创业板指数预警误差比较分析

    Table 5.  Comparative analysis of early warning errors between SSE index and GEM index.

    最低绝
    对误差
    最高绝
    对误差
    平均绝
    对误差
    LPPL上证指数92718
    创业板指4107
    LPPL-MS上证指数8*13*11*
    创业板指1*8*6*
    注: *表明预测的见顶时点最接近真实值.
    DownLoad: CSV

    表 6  上证指数、创业板指数不同拟合情形下残差平稳性检验

    Table 6.  Residual stationarity test of SSE index and GEM index under different fitting conditions.

    拟合情形1拟合情形2拟合情形3
    LPPL上证指数0.014**0.021**0.013**
    创业板指0.0428**0.073*0.0959*
    LPPL-MS上证指数0.001***0.001***0.012**
    创业板指0.019**0.041**0.074*
    注: *表明在10%水平下显著; **表明在5%水平下显著; ***表明在1%水平下显著.
    DownLoad: CSV
    Baidu
  • [1]

    Sornette D, Johansen A, Bouchaud J P 1995 J. Phys. I. 6 167Google Scholar

    [2]

    Johansen A, Sornette D 1999 Risk. 12 91

    [3]

    Jensen M C 1967 Financ. Anal. J. 23 77

    [4]

    Fama U 1965 J. Bus. 38 34Google Scholar

    [5]

    蒋志强, 田婧雯, 周炜星 2019 管理科学学报 22 92Google Scholar

    Jiang Z Q, Tian J W, Zhou W X 2019 J. Manag. Sci. China 22 92Google Scholar

    [6]

    徐翔, 朱承, 朱先强 2021 70 088901Google Scholar

    Xu X, Zhu C, Zhu X Q 2021 Acta Phys. 70 088901Google Scholar

    [7]

    Gurkaynak R S 2008 J. Econ. Sury. 22 166Google Scholar

    [8]

    Bak P, Tang C, Wiesenfeld K 1987 Phys. Rev. Lett. 59 381Google Scholar

    [9]

    潘娜, 王子剑, 周勇 2018 中国管理科学 26 25Google Scholar

    Pan N, Wang Z J, Zhou Y 2018 Chin. J. Manag. Sci. 26 25Google Scholar

    [10]

    周炜星 2007 金融物理学导论 (上海: 上海财经大学出版社) 第17—33页

    Zhou W X 2007 Introduction of Econophysics (Shang-hai: Shanghai University of Finance and Economics Press) pp17–33 (in Chinese)

    [11]

    Sornette D, Johansen A 1997 Physica A 245 411Google Scholar

    [12]

    Sornette D, Johansen A 1998 Physica A 261 581Google Scholar

    [13]

    Sornette D, Zhou W X 2006 Int. J. Forecast 22 153Google Scholar

    [14]

    Sornette D, Woodard R, Zhou W X 2009 Physica A 388 1571Google Scholar

    [15]

    Kyriazis N, Papadamou S, Corbet S 2020 Res. Int. Bus. Financ. 54 101254Google Scholar

    [16]

    Omer O 2020 Eur. Phys. J. Spec. Top. 229 1715Google Scholar

    [17]

    Sirca S J, Omladic M 2020 ARS Math. Contemp. 13 63

    [18]

    Filimonov V, Sornette D 2013 Physica A 392 3698Google Scholar

    [19]

    Jiang Z, Zhou W X, Sornette D, et al. 2010 J. Econ. Behav. Organ. 74 149Google Scholar

    [20]

    Yan W, Rebib R, Woodard R, Sornette D 2012 IJPAM. 1 59Google Scholar

    [21]

    李东 2012 淮海工学院学报(自然科学版) 21 4

    Li D 2012 J. Huaihai Insti of Tech. (Natural Science Edition) 21 4

    [22]

    周伟, 何建敏 2011 金融研究 375 65

    Zhou W, He J M 2011 J. Financ. Res. 375 65

    [23]

    李斯嘉, 李冬昕, 王粟旸 2017 上海经济研究 7 42

    Li S J, Li D X, Wang L Y 2017 Shanghai J. Econ. 7 42

    [24]

    李伦一, 张翔 2019 金融研究 474 169

    Li L Y, Zhang X 2019 J. Financ. Res. 474 169

    [25]

    陈卫华, 蔡文靖 2018 统计与决策 497 143Google Scholar

    Chen W H, Cai W J 2018 Statistics and Decision 497 143Google Scholar

    [26]

    赵磊, 刘庆 2020 统计与决策 558 128Google Scholar

    Zhao L, Liu Q 2020 Statistics and Decision 558 128Google Scholar

    [27]

    Kahneman D 2003 Am. Econ. Rev. 93 1449Google Scholar

    [28]

    Baker M, Wurgler J 2006 J. Financ. 61 1645Google Scholar

    [29]

    Baker M, Wurgler J 2007 J. Econ. Perspect 21 129Google Scholar

    [30]

    García D 2013 J. Financ. 68 1267Google Scholar

    [31]

    Fang L, Peress J 2009 J. Financ. 64 2023Google Scholar

    [32]

    Barber B M, Odean T 2008 Rev. Financ. Stud. 21 785Google Scholar

    [33]

    Solomon D H 2012 J. Financ. 67 599Google Scholar

    [34]

    Nardo M, Petracco-Giudici M, Naltsidis M 2016 J. Econ. Surv. 30 356Google Scholar

    [35]

    Fisher K L, Statman M 2000 Financ. Anal. J. 56 16Google Scholar

    [36]

    武佳薇, 汪昌云, 陈紫琳, Jie Michael Guo 2020 金融研究 476 147

    Wu J W, Wang C Y, Chen Z L, Jie M G 2020 J. Financ. Res. 476 147

    [37]

    李合龙, 冯春娥 2014 系统工程理论与实践 34 2495Google Scholar

    Li H L, Feng C E 2014 System Eng. Theor. Prac. 34 2495Google Scholar

    [38]

    游家兴, 吴静 2012 经济研究 534 141

    You J X, Wu J 2012 Econ. Res. J 534 141

    [39]

    Wu D D, Zheng L, Olson D L 2014 IEEE T. SYST Man CY-S. 44 1077Google Scholar

    [40]

    戴德宝, 兰玉森, 范体军, 赵敏 2019 中国软科学 340 166Google Scholar

    Dai D B, Lan Y S, Fan T J, Zhao M 2019 China Soft Sci. 340 166Google Scholar

    [41]

    Martin G 1971 In Computers, Communication, and the Public Interest (Baltimore, MD: The Johns Hopkins Press) p37

    [42]

    Da Z, Engelberg J, Gao P 2011 J. Financ. 66 1461Google Scholar

    [43]

    Huang X, Nekrasov A, Teoh S H 2018 Account. Rev. 93 231Google Scholar

    [44]

    Sentiment Analysis, Bian S B, Jia D K, Li F http://dx.doi.org/10.2139/ssrn.3446388 [2020-11-10]

    [45]

    王晓丹, 尚维, 汪寿阳 2019 系统工程理论与实践 39 3038Google Scholar

    Wang X D, Shang W, Wang S Y 2019 System Eng. Theor. Prac. 39 3038Google Scholar

    [46]

    Johansen A, Ledoit O, Sornette D. 2000 Int J Theor Appl Finan. 3 219Google Scholar

    [47]

    Yan W F, Woodard R, Sornette D 2014 Quant. Financ. 14 1273Google Scholar

    [48]

    Lin L, Sornette D 2013 Eur. J. Financ. 19 344Google Scholar

Metrics
  • Abstract views:  6948
  • PDF Downloads:  120
  • Cited By: 0
Publishing process
  • Received Date:  18 November 2020
  • Accepted Date:  08 September 2021
  • Available Online:  30 December 2021
  • Published Online:  20 January 2022

/

返回文章
返回
Baidu
map