-
光子轨道角动量(OAM)为光通信提供了新的高维自由度,有望提高光信息传输系统信道容量,解决当前通信资源紧张的问题.OAM键控(OAM-SK)是一种新型的信息传输机制,其中,对OAM模式的有效识别和检测是实现OAM-SK译码的核心技术之一.本文提出了一种基于对数极坐标变换的OAM译码系统,首先通过设计的坐标变换光栅进行映射,再引入优化的相位校正光栅进行补偿,最后采用一个傅里叶变换透镜实现了OAM模式的分离.对系统在不同光栅参数下的分束效果进行了数值评估,在实验中成功实现了-35至+31阶轨道角动量模式的分束.进一步地,基于该OAM解复用系统,搭建了自由空间光数据传输演示系统,通过引入特定译码规则,有效克服了对数极坐标变换存在的相邻模式混叠的问题,实现了748934个码元的无误码传输.为未来高容量光通信系统的发展提供支持.Orbital angular momentum (OAM), as a novel high-dimensional degree of freedom, offering significantly potential for optical communication in increasing the system channel capacity and addressing the scarcity of communication resources. However, the effective recognition and detection of OAM modes are the core challenges for achieving efficient communication in such systems. This paper presents an OAM decoding system based on log-polar coordinate transformation, consisting of a designed coordinate transformation device, a phase corrector, and a Fourier transform lens. The coordinate transformation device fabricated by liquid crystal polymer is utilized to map the incident vortex beam from polar coordinates into Cartesian coordinates, followed by the phase corrector to compensate for phase distortions into a collimated beam. Finally, the Fourier transform lens is employed to separate the OAM modes at different space positions in its rear focal plane. The performance of the system is numerically evaluated under several ablation studies, analyzing the impact of various grating parameters on beam separation efficiency. Experimentally, the system successfully achieved the decoding of OAM modes ranging from -35 to +31 orders. Furthermore, a free-space optical communication demonstration system was constructed based on this OAM decoding system. By introducing specifically designed decoding rules, the system effectively mitigated the adjacent mode crosstalk inherent in logarithmic polar coordinate transformation and successfully transmitted 748,934 symbols without errors. Such favorable results highlight the proposed system ability for OAM-based optical communication and provide valuable insights for the future development of high-capacity optical communication networks.
-
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992Phys. Rev. A 45 8185
[2] Beth R A 1936Phys. Rev. 50 115
[3] Shen Y, Wang X, Xie Z, Min C, Fu X, Liu Q, Gong M, Yuan X 2019Light Sci Appl 8 90
[4] Willner A E, Huang H, Yan Y, Ren Y, Ahmed N, Xie G, Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M, Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S 2015Adv. Opt. Photon. 7 66
[5] Mair A, Vaziri A, Weihs G, Zeilinger A 2001Nature 412 313
[6] Fang X, Ren H, Gu M 2020Nat. Photonics 14 102
[7] Erhard M, Fickler R, Krenn M, Zeilinger A 2017Light Sci Appl 7 17146
[8] Wang J, Liu J, Li S, Zhao Y, Du J, Zhu L 2022Nanophotonics 11 645
[9] Trichili A, Park K H, Zghal M, Ooi B S, Alouini M S 2019IEEE Commun. Surv. Tutorials 21 3175
[10] Chen Y A, Zhang Q, Chen T Y, Cai W Q, Liao S K, Zhang J, Chen K, Yin J, Ren J G, Chen Z, Han S L, Yu Q, Liang K, Zhou F, Yuan X, Zhao M S, Wang T Y, Jiang X, Zhang L, Liu W Y, Li Y, Shen Q, Cao Y, Lu C Y, Shu R, Wang J Y, Li L, Liu N L, Xu F, Wang X B, Peng C Z, Pan J W 2021Nature 589 214
[11] Qiu X, Guo H, Chen L 2023Nat. Commun. 14 8244
[12] Vallone G, D’Ambrosio V, Sponselli A, Slussarenko S, Marrucci L, Sciarrino F, Villoresi P 2014Phys. Rev. Lett. 113 060503
[13] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y, Pan J W 2015Nature 518 516
[14] Du J, Wang J 2015Opt. Lett. 40 4827
[15] Shang Z, Fu S, Hai L, Zhang Z, Li L, Gao C 2022Opt. Express 30 34053
[16] Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020Optica 7 254
[17] Wang J, Yang J Y, Fazal I M, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner A E 2012Nat. Photonics 6 488
[18] Fu S, Zhai Y, Zhang J, Liu X, Song R, Zhou H, Gao C 2020PhotoniX 1 19
[19] Fu S, Wang T W, Yan Gao Y and Gao C 2016Chin. Opt. Lett. 14 080501
[20] Zhao Q, Dong M, Bai Y, Yang Y 2020Photon. Res. 8 745
[21] Leach J, Padgett M J, Barnett S M, Franke-Arnold S, Courtial J 2002Phys. Rev. Lett. 88 257901
[22] Zhou H L, Fu D Z, Dong J J, Zhang P, Chen D X, Cai X L, Li F L, Zhang X L 2016Light Sci Appl 6 16251
[23] Lavery M P J, Speirits F C, Barnett S M, Padgett M J 2013Science 341 537
[24] Wang H, Zhan Z, Hu F, Meng Y, Liu Z, Fu X, Liu Q 2023PhotoniX 4 9
[25] Wang J, Fu S, Shang Z, Hai L, Gao C 2022Opt. Lett. 47 1419
[26] Zhou S, Li L, Gao C, Fu S 2023Opt. Lett. 49 173
[27] Berkhout G C G, Lavery M P J, Courtial J, Beijersbergen M W, Padgett M J 2010Phys. Rev. Lett. 105 153601
[28] Mirhosseini M, Malik M, Shi Z, Boyd R W 2013Nat. Commun. 4 2781
[29] Wen Y, Chremmos I, Chen Y, Zhu J, Zhang Y, Yu S 2018Phys. Rev. Lett. 120 193904
[30] Cheng J, Wan C, Zhan Q 2022Opt. Express 30 16330
[31] Cheng J, Sha X, Zhang H, Chen Q, Qu G, Song Q, Yu S, Xiao S 2022Nano Lett. 22 3993
[32] Li L, Guo Y, Zhang Z, Shang Z, Li C, Wang J, Gao L, Hai L, Gao C, Fu S 2023Adv. Photon. 5
[33] Hossack, W. J., Darling, A. M., & Dahdouh, A 1987Journal of Modern Optics 341235
[34] Lavery M P J, Robertson D J, Berkhout G C G, Love G D, Padgett M J, Courtial J 2012Opt. Express 20 2110
[35] Lavery M P J, Robertson D J, Sponselli A, Courtial J, Steinhoff N K, Tyler G A, Wilner A E, Padgett M J 2013New J. Phys. 15 013024
[36] Chen P, Wei B Y, Hu W, Lu Y Q 2020Advanced Materials 32 1903665
[37] Saber G, Gutiérrez-Castrejón R, Xing Z, Alam S, El-Fiky E, Ceballos-Herrera D E, Cavaliere F, Vall-Llosera G, Lessard S, Plant D V 2021IEEE Photonics Journal 131
计量
- 文章访问数: 172
- PDF下载量: 4
- 被引次数: 0