-
The L-shell X-ray emission of tungsten is investigated under the bombardment of C6+ ions in a high energy range of 154—424 MeV/u. Compared with the atomic data, the energy of the X-ray is enlarged, and the relative intensity ratio of Lι, Lβ1,3,4 and Lβ2,15 to Lα1,2 X-rays are enhanced. The L-subshell and the total X-ray production cross section are calculated from a well corrected thick target formula and compared with the theoretical estimation of binary encounter approximation (BEA), plane-wave Born approximation (PWBA) and ECPSSR (PWBA theory modified with Energy-loss, Coulomb-repulsion, Perturbed-Stationary-State and Relativistic corrections). On the whole, the experimental cross sections are all smaller than the prediction of PWBA and ECPSSR, but in rough agreement with that of BEA. It is indicated that the inner-shell ionization of W can be considered as a binary process between the high energy C6+ ions acting as a point charge and the independent target electrons. With the L-shell ionization, the outer-shells are multiply ionized. The multi-ionization degree is approximately regard as a constant in the present work. This leads the X-ray energy to be blueshifted and the relative intensity ratios of Lι and Lβ to Lα X-ray to be enhanced. Using the atomic parameters corrected by multi-ionization, the X-ray production cross section can be estimated by the BEA model.
-
Keywords:
- high energy heavy ions /
- ion-atom collision /
- multiple ionization /
- X-ray
[1] Xu G, Barriga-Carrasco M D, Blazevic A, et al. 2017 Phys. Rev. Lett. 119 207801
[2] Breuer L, Meinerzhagen F, Herder M, Bender M, Severin D, Lerach J O, Wucher A 2016 J. Vac. Sci. Technol. B 34 03H130
Google Scholar
[3] Czarnota M, Banaś D, Braziewicz J, Semaniak J, Pajek M, Jaskóła M, Korman A, Kretschmer W, Lapicki G, Mukoyama T 2009 Phys. Rev. A 79 032710
Google Scholar
[4] Schmelmer O, Dollinger G, Datzmann G, Hauptner A, Körner H J, Maier-Komor P, Reichart P 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 469
Google Scholar
[5] Tapper U, Räisädnen J 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 71 214
[6] Greenberg J S, Davis C K, Vincent P 1974 Phys. Rev. Lett. 30 473
[7] 周小红, 张志远, 甘再国, 许甫荣, 周善贵 2020 中国科学: 物理学 力学 天文学 50 112002
Google Scholar
Zhou X H, Zhang Z Y, Gan Z G, Xu F R, Zhou S G 2020 Sci. Sin. -Phys. Mech. Astron. 50 112002
Google Scholar
[8] 叶沿林, 杨晓菲, 刘洋, 韩家兴 2020 中国科学: 物理学 力学 天文学 50 112003
Google Scholar
Ye Y L, Yang Y F, Liu Y, Han J X 2020 Sci. Sin.-Phys. Mech. Astron. 50 112003
Google Scholar
[9] 赵永涛, 张子民, 程锐, 等 2020 中国科学: 物理学 力学 天文学 50 112004
Google Scholar
Zhao Y T, Zhang Z M, Chen R, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112004
Google Scholar
[10] 曹须, 陈旭荣, 龚畅, 等 2020 中国科学: 物理学 力学 天文学 50 112005
Google Scholar
Cao X, Chen X R, Gong C, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112005
Google Scholar
[11] 赵红卫, 徐瑚珊, 肖国青, 等 2020 中国科学: 物理学 力学 天文学 50 112006
Google Scholar
Zhao H W, Xu H S, Xiao G Q, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112006
Google Scholar
[12] 郭冰, 柳卫平, 唐晓东, 李志宏, 何建军 2020 中国科学: 物理学 力学 天文学 50 112007
Google Scholar
Guo B, Liu W P, Tang X D, Li Z H, He J J 2020 Sci. Sin.-Phys. Mech. Astron. 50 112007
Google Scholar
[13] 马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008
Google Scholar
Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008
Google Scholar
[14] 马余刚, 许怒, 刘峰 2020 中国科学: 物理学 力学 天文学 50 112009
Google Scholar
Ma Y G, Xu N, Liu F 2020 Sci. Sin.-Phys. Mech. Astron. 50 112009
Google Scholar
[15] 孙志宇, 陈良文, 蔡汉杰, 李亮, 尤郑昀, 袁野, 王莹, 谢聚军, 冯兆庆, 王世陶 2020 中国科学: 物理学 力学 天文学 50 112010
Google Scholar
Sun Z Y, Chen L W, Cai H J, Li L, You Z Y, Yuan Y, Wang Y, Xie J J, Feng Z Q, Wang S T 2020 Sci. Sin.-Phys. Mech. Astron. 50 112010
Google Scholar
[16] 程锐, 张晟, 申国栋, 等 2020 中国科学: 物理学 力学 天文学 50 112011
Google Scholar
Chen R, Zhang S, Sheng G D, et al. 2020 Sci Sin. -Phys. Mech. Astron. 50 112011
Google Scholar
[17] Kawata S 2021 Adv. Phys. X 6 1873860
[18] Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89
Google Scholar
[19] Hofmann I 2015 Rev. Accel. Sci. Technol. 08 37
Google Scholar
[20] Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Rev. Mod. Phys. 86 317
Google Scholar
[21] Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002
Google Scholar
[22] Marshall F J, McKenty P W, Delettrez J A, et al. 2009 Phys. Rev. Lett. 102 185004
Google Scholar
[23] Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 1767
[24] Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969
[25] Gorlachev I, Gluchshenko N, Ivanov I, Kireyev A, Krasnopyorova M, Kurakhmedov A, Platov A, Sambayev Y, Zdorovets M 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 448 19
Google Scholar
[26] Lapicki G 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 467 123
Google Scholar
[27] Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709
Google Scholar
[28] Cohen D D, Stelcer E, Crawford J, Atanacio A, Doherty G, Lapicki G 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 318 11
Google Scholar
[29] Gryzinski M 1965 Phys. Rev. A 138 A336
[30] Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1
Google Scholar
[31] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717
Google Scholar
[32] Lapicki G 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 189 8
Google Scholar
[33] Vigilante M, Cuzzocrea P, De Cesare N, Murolo F, Perillo E, Spadaccini G 1990 Nucl. Instrum. Methods Phys. Res. , Sect. B 51 232
Google Scholar
[34] Kondo C, Takabayashi Y, Muranaka T, Masugi S, Azuma T, Komaki K, Hatakeyama A, Yamazaki Y, Takada E, Murakami T 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 230 85
Google Scholar
[35] Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703
Google Scholar
[36] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 曾利霞 2017 66 143401
Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401
Google Scholar
[37] Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402
Google Scholar
[38] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹 2013 62 173401
Google Scholar
Zhang X A, Mei C X, Zhao Y T, Cheng R, Wang X, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R 2013 Acta Phys. Sin. 62 173401
Google Scholar
[39] Awaya Y, Kambara T, Kanai Y 1999 Int. J. Mass Spectrom. 192 49
Google Scholar
[40] Hopkins F, Elliott D O, Bhalla C P, Richard P 1973 Phys. Rev. A 8 2952
Google Scholar
[41] Hoszowska J, Kheifets A K, Dousse J Cl, Berset M, Bray I, Cao W, Fennane K, Kayser Y, Kavčič M, Szlachetko J, Szlachetko M 2009 Phys. Rev. Lett. 102 073006
Google Scholar
[42] Horvat V, Watson R L, Peng Y 2009 Phys. Rev. A 79 012708
Google Scholar
[43] Kavčič M, Kobal M, Budnar M, Dousse J Cl, Tökési K 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 235
Google Scholar
[44] Kobal M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 229 165
Google Scholar
[45] Cipolla S J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 153
Google Scholar
[46] Cipolla S j, Hill B P 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 241 129
Google Scholar
[47] Miranda J, Lucio O G, Téllez E B, Martı́nez J N 2004 Radiat. Phys. Chem. 69 257
Google Scholar
[48] Bearden J A 1967 Rev. Mod. Phys. 39 78
Google Scholar
[49] Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C, Vaughan D) 2001 X-ray Data Book
[50] Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546
Google Scholar
[51] Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125
Google Scholar
[52] Sarkadi L, Mukoyama T 1980 J. Phys. B: Atom. Mol. Phys. 13 2255
Google Scholar
[53] Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959
Google Scholar
[54] Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233
Google Scholar
[55] Kavčič M, Šmit Ž, Budnar M 1997 Phys. Rev. A 56 4675
Google Scholar
[56] Campbell J L 2003 At. Data Nucl. Data tables 85 291
Google Scholar
[57] Campbell J L 2009 At. Data Nucl. Data tables 95 115
Google Scholar
[58] Ouziane S, Amokrane A, Zilabdi M 2000 Nucl. Instrum Methods Phys. Res., Sect. B 161-163 141
[59] Kennedy V J, Augusthy A, Varier K M, Magudapathy P, Nair K G M, Dhal B B, Padhi H C 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 134 165
Google Scholar
[60] Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Chen X M, Zhao Y T, Xiao G Q 2017 Nucl. Instrum. Methods Res., Sect. B 408 140
Google Scholar
[61] Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718
Google Scholar
[62] Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813
Google Scholar
[63] Scofield J H 1974 At. Data Nucl. Data tables 14 121
Google Scholar
[64] Scofield J H 1974 Phys. Rev. A 10 1507
-
表 1 不同能量C6+离子轰击产生W的L壳层分支X射线能量, 以及300 keV质子激发数据和单电离的原子数据[48,49]
Table 1. W L-subshell X-ray energies induced by high energy C6+ ions and 300 keV H+, and the atomic data [48,49].
Lι/eV Lα1, 2/eV Lβ1, 3, 4/eV Lβ2, 15/eV Lγ1/eV Lγ2, 3/eV Atomic 7387 8392 9673 9955 11285 11647 Proton 7383 ± 3 8390 ± 3 9677 ± 4 9959 ± 5 11289 ± 4 11649 ± 5 154 MeV/u 7508 ± 5 8472 ± 3 9750 ± 3 10041 ± 5 11363 ± 6 11794 ± 9 205 MeV/u 7497 ± 7 8438 ± 5 9711 ± 5 9999 ± 7 11349 ± 9 11743 ± 10 293 MeV/u 7495 ± 6 8446 ± 3 9718 ± 4 10017 ± 5 11343 ± 7 11767 ± 8 343 MeV/u 7493 ± 5 8432 ± 5 9708 ± 4 10005 ± 4 11336 ± 8 11746 ± 11 424 MeV/u 7503 ± 7 8440 ± 4 9712 ± 5 10007 ± 6 11346 ± 7 11749 ± 10 表 2 高能C6+离子激发W的L X射线发射截面
Table 2. Experimental results of W L-shell X-ray production cross section induced by high energy C6+ ions.
E/(MeV·u–1) Lι/(102 b) Lα/(103 b) Lβ1, 3, 4/(103 b) Lβ2, 15/(102 b) Lβ/(103 b) Lγ/(102 b) Ltotal/(103 b) 154 2.29 ± 0.39 2.58 ± 0.44 1.55 ± 0.26 7.41 ± 1.25 2.29 ± 0.39 5.48 ± 0.93 5.64 ± 0.96 205 1.56 ± 0.26 2.18 ± 0.37 1.22 ± 0.21 5.25 ± 0.89 1.74 ± 0.30 3.89 ± 0.66 4.47 ± 0.76 293 1.28 ± 0.22 1.79 ± 0.30 1.06 ± 0.18 4.56 ± 0.77 1.51 ± 0.26 3.10 ± 0.53 3.74 ± 0.64 343 1.24 ± 0.21 1.71 ± 0.29 1.07 ± 0.18 4.56 ± 0.77 1.52 ± 0.26 2.96 ± 0.50 3.68 ± 0.62 424 1.13 ± 0.19 1.63 ± 0.28 0.92 ± 0.16 4.44 ± 0.75 1.36 ± 0.23 2.70 ± 0.46 3.40 ± 0.57 -
[1] Xu G, Barriga-Carrasco M D, Blazevic A, et al. 2017 Phys. Rev. Lett. 119 207801
[2] Breuer L, Meinerzhagen F, Herder M, Bender M, Severin D, Lerach J O, Wucher A 2016 J. Vac. Sci. Technol. B 34 03H130
Google Scholar
[3] Czarnota M, Banaś D, Braziewicz J, Semaniak J, Pajek M, Jaskóła M, Korman A, Kretschmer W, Lapicki G, Mukoyama T 2009 Phys. Rev. A 79 032710
Google Scholar
[4] Schmelmer O, Dollinger G, Datzmann G, Hauptner A, Körner H J, Maier-Komor P, Reichart P 2001 Nucl. Instrum. Methods Phys. Res., Sect. B 179 469
Google Scholar
[5] Tapper U, Räisädnen J 1992 Nucl. Instrum. Methods Phys. Res., Sect. B 71 214
[6] Greenberg J S, Davis C K, Vincent P 1974 Phys. Rev. Lett. 30 473
[7] 周小红, 张志远, 甘再国, 许甫荣, 周善贵 2020 中国科学: 物理学 力学 天文学 50 112002
Google Scholar
Zhou X H, Zhang Z Y, Gan Z G, Xu F R, Zhou S G 2020 Sci. Sin. -Phys. Mech. Astron. 50 112002
Google Scholar
[8] 叶沿林, 杨晓菲, 刘洋, 韩家兴 2020 中国科学: 物理学 力学 天文学 50 112003
Google Scholar
Ye Y L, Yang Y F, Liu Y, Han J X 2020 Sci. Sin.-Phys. Mech. Astron. 50 112003
Google Scholar
[9] 赵永涛, 张子民, 程锐, 等 2020 中国科学: 物理学 力学 天文学 50 112004
Google Scholar
Zhao Y T, Zhang Z M, Chen R, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112004
Google Scholar
[10] 曹须, 陈旭荣, 龚畅, 等 2020 中国科学: 物理学 力学 天文学 50 112005
Google Scholar
Cao X, Chen X R, Gong C, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112005
Google Scholar
[11] 赵红卫, 徐瑚珊, 肖国青, 等 2020 中国科学: 物理学 力学 天文学 50 112006
Google Scholar
Zhao H W, Xu H S, Xiao G Q, et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 112006
Google Scholar
[12] 郭冰, 柳卫平, 唐晓东, 李志宏, 何建军 2020 中国科学: 物理学 力学 天文学 50 112007
Google Scholar
Guo B, Liu W P, Tang X D, Li Z H, He J J 2020 Sci. Sin.-Phys. Mech. Astron. 50 112007
Google Scholar
[13] 马新文, 张少锋, 汶伟强, 杨杰, 朱小龙, 钱东斌, 闫顺成, 张鹏鸣, 郭大龙, 汪寒冰, 黄忠魁 2020 中国科学: 物理学 力学 天文学 50 112008
Google Scholar
Ma X W, Zhang S F, Wen W Q, Yang J, Zhu X L, Qian D B, Yan S C, Zhang P M, Guo D L, Wang H B, Huang Z K 2020 Sci. Sin.-Phys. Mech. Astron. 50 112008
Google Scholar
[14] 马余刚, 许怒, 刘峰 2020 中国科学: 物理学 力学 天文学 50 112009
Google Scholar
Ma Y G, Xu N, Liu F 2020 Sci. Sin.-Phys. Mech. Astron. 50 112009
Google Scholar
[15] 孙志宇, 陈良文, 蔡汉杰, 李亮, 尤郑昀, 袁野, 王莹, 谢聚军, 冯兆庆, 王世陶 2020 中国科学: 物理学 力学 天文学 50 112010
Google Scholar
Sun Z Y, Chen L W, Cai H J, Li L, You Z Y, Yuan Y, Wang Y, Xie J J, Feng Z Q, Wang S T 2020 Sci. Sin.-Phys. Mech. Astron. 50 112010
Google Scholar
[16] 程锐, 张晟, 申国栋, 等 2020 中国科学: 物理学 力学 天文学 50 112011
Google Scholar
Chen R, Zhang S, Sheng G D, et al. 2020 Sci Sin. -Phys. Mech. Astron. 50 112011
Google Scholar
[17] Kawata S 2021 Adv. Phys. X 6 1873860
[18] Kawata S, Karino T, Ogoyski A I 2016 Matter Radiat. Extremes 1 89
Google Scholar
[19] Hofmann I 2015 Rev. Accel. Sci. Technol. 08 37
Google Scholar
[20] Back B B, Esbensen H, Jiang C L, Rehm K E 2014 Rev. Mod. Phys. 86 317
Google Scholar
[21] Ciricosta O, Vinko S M, Chung H K, et al. 2012 Phys. Rev. Lett. 109 065002
Google Scholar
[22] Marshall F J, McKenty P W, Delettrez J A, et al. 2009 Phys. Rev. Lett. 102 185004
Google Scholar
[23] Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 1767
[24] Kahoul A, Nekkab M, Deghfel B 2008 Nucl. Instrum. Methods Phys. Res. , Sect. B 266 4969
[25] Gorlachev I, Gluchshenko N, Ivanov I, Kireyev A, Krasnopyorova M, Kurakhmedov A, Platov A, Sambayev Y, Zdorovets M 2019 Nucl. Instrum. Methods Phys. Res. , Sect. B 448 19
Google Scholar
[26] Lapicki G 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 467 123
Google Scholar
[27] Singh Y, Tribedi L C 2002 Phys. Rev. A 66 062709
Google Scholar
[28] Cohen D D, Stelcer E, Crawford J, Atanacio A, Doherty G, Lapicki G 2014 Nucl. Instrum. Methods Phys. Res., Sect. B 318 11
Google Scholar
[29] Gryzinski M 1965 Phys. Rev. A 138 A336
[30] Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1
Google Scholar
[31] Brandt W, Lapicki G 1981 Phys. Rev. A 23 1717
Google Scholar
[32] Lapicki G 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 189 8
Google Scholar
[33] Vigilante M, Cuzzocrea P, De Cesare N, Murolo F, Perillo E, Spadaccini G 1990 Nucl. Instrum. Methods Phys. Res. , Sect. B 51 232
Google Scholar
[34] Kondo C, Takabayashi Y, Muranaka T, Masugi S, Azuma T, Komaki K, Hatakeyama A, Yamazaki Y, Takada E, Murakami T 2005 Nucl. Instrum. Methods Phys. Res. , Sect. B 230 85
Google Scholar
[35] Fritzsche S, Kabachnik N M, Surzhykov A 2008 Phys. Rev. A 78 032703
Google Scholar
[36] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 曾利霞 2017 66 143401
Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401
Google Scholar
[37] Zhou X M, Cheng R, Lei Y, Sun Y B, Wang Y Y, Wang X, Xu G, Mei C X, Zhang X A, Chen X M, Xiao G Q, Zhao Y T 2016 Chin. Phys. B 25 023402
Google Scholar
[38] 张小安, 梅策香, 赵永涛, 程锐, 王兴, 周贤明, 雷瑜, 孙渊博, 徐戈, 任洁茹 2013 62 173401
Google Scholar
Zhang X A, Mei C X, Zhao Y T, Cheng R, Wang X, Zhou X M, Lei Y, Sun Y B, Xu G, Ren J R 2013 Acta Phys. Sin. 62 173401
Google Scholar
[39] Awaya Y, Kambara T, Kanai Y 1999 Int. J. Mass Spectrom. 192 49
Google Scholar
[40] Hopkins F, Elliott D O, Bhalla C P, Richard P 1973 Phys. Rev. A 8 2952
Google Scholar
[41] Hoszowska J, Kheifets A K, Dousse J Cl, Berset M, Bray I, Cao W, Fennane K, Kayser Y, Kavčič M, Szlachetko J, Szlachetko M 2009 Phys. Rev. Lett. 102 073006
Google Scholar
[42] Horvat V, Watson R L, Peng Y 2009 Phys. Rev. A 79 012708
Google Scholar
[43] Kavčič M, Kobal M, Budnar M, Dousse J Cl, Tökési K 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 233 235
Google Scholar
[44] Kobal M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 229 165
Google Scholar
[45] Cipolla S J 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 261 153
Google Scholar
[46] Cipolla S j, Hill B P 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 241 129
Google Scholar
[47] Miranda J, Lucio O G, Téllez E B, Martı́nez J N 2004 Radiat. Phys. Chem. 69 257
Google Scholar
[48] Bearden J A 1967 Rev. Mod. Phys. 39 78
Google Scholar
[49] Thompson A C, Attwood D T, Gullikson E M, et al. (Edited by Thompson A C, Vaughan D) 2001 X-ray Data Book
[50] Czarnota M, Pajek M, Banaś D, et al. 2006 Braz. J. Phys. 36 546
Google Scholar
[51] Semaniak J, Braziewicz J, Pajek M, Czyżewski T, Głowacka L, Jaskóła M, Hailer M, Karschnick R, Kretschmer W, Halabuka Z, Trautmann D 1995 Phys. Rev. A 52 1125
Google Scholar
[52] Sarkadi L, Mukoyama T 1980 J. Phys. B: Atom. Mol. Phys. 13 2255
Google Scholar
[53] Watson R L, Blackadar J M, Horvat V 1999 Phys. Rev. A 60 2959
Google Scholar
[54] Banaś D, Pajek M, Semaniak J, et al. 2002 Nucl. Instrum. Methods Phys. Res., Sect. B 195 233
Google Scholar
[55] Kavčič M, Šmit Ž, Budnar M 1997 Phys. Rev. A 56 4675
Google Scholar
[56] Campbell J L 2003 At. Data Nucl. Data tables 85 291
Google Scholar
[57] Campbell J L 2009 At. Data Nucl. Data tables 95 115
Google Scholar
[58] Ouziane S, Amokrane A, Zilabdi M 2000 Nucl. Instrum Methods Phys. Res., Sect. B 161-163 141
[59] Kennedy V J, Augusthy A, Varier K M, Magudapathy P, Nair K G M, Dhal B B, Padhi H C 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 134 165
Google Scholar
[60] Zhou X M, Cheng R, Wang Y Y, Lei Y, Chen Y H, Chen X M, Zhao Y T, Xiao G Q 2017 Nucl. Instrum. Methods Res., Sect. B 408 140
Google Scholar
[61] Lapicki G, Murty G A V R, Raju G J N, Reddy B S, Reddy S B, Vijayan V 2004 Phys. Rev. A 70 062718
Google Scholar
[62] Lapicki G, Mehta R, Duggan J I, Kocur P M, Price J L, McDaniel F D 1986 Phys. Rev. A 34 3813
Google Scholar
[63] Scofield J H 1974 At. Data Nucl. Data tables 14 121
Google Scholar
[64] Scofield J H 1974 Phys. Rev. A 10 1507
Catalog
Metrics
- Abstract views: 4725
- PDF Downloads: 47
- Cited By: 0