-
在兰州重离子加速器国家实验室, 利用硅漂移X射线探测器探测了4.5 MeV I20+离子入射到Fe, Co, Ni, Cu, Zn靶表面时产生I的L壳层X射线. 实验观察到Lι, Lα1, 2, Lβ1, 3, 4, Lβ2, 15, Lγ1, Lγ2, 3, 4, 4' 等6组分辨较好的谱线, 各分支X射线的能量发生了蓝移; Lβ1, 3, 4, Lβ2, 15与Lα1, 2谱线的相对强度比随靶原子序数的增大基本线性增加, Lι与Lα1, 2, Lγ2, 3, 4, 4' 与Lγ1 X射线的相对强度比近似与靶原子序数的平方成正比. 分析表明, 玻尔速度附近能量的低速高电荷态离子与固体靶原子碰撞产生的内壳层过程存在直接库仑电离和电子俘获的双重综合作用, 这使得内壳层X射线发射时, 外壳层仍存在多个空穴, 导致辐射X射线的频移和分支比的变化.The L-shell X-ray emissions of iodine are investigated as a function of target atomic number for 4.5-MeV I20+ ions impacting on Fe, Co, Ni, Cu and Zn targets. Six distinct L-subshell X-rays are observed. The energy of the x-ray has a blue shift compared with the atomic data. The relative intensity ratio of Lβ1, 3, 4 and Lβ2, 15 to Lα1, 2 almost increase linearly with the target atomic number increasing. The ratio of I(Lι) to I(Lα1, 2) and I (Lγ2, 3, 4, 4') to I(Lγ1) are approximately proportional to the square of target atomic number. It is indicated that during the interaction of highly charged heavy ions with atom in the energy region near the Bohr velocity, the inner-shell process is mainly caused by the close-range collisions below the surface. There, the projectile not only has enough time to capture electrons from the target atom to be neutralized, but also has enough kinetic energy to ionize the inner-shell electron by coulomb interaction. At the balance between electron capture and ionization, the outer-shells of M, N, O etc. could be multiply ionized. The extent of multiple ionization increases with the target atomic number increasing. That leads to the energy shift, resulting in the change of the relative intensity ratio for the L-subshell X-ray. The smaller the atomic fluorescence, the larger the enhanced fluorescence caused by multiple ionization.
-
Keywords:
- ion-atom collision /
- X-ray /
- multiple ionization
[1] Siddique N, Waheed S, Daud M, Markwitz A, Hopke P K 2012 J. Radioanal. Nucl. Chem. 293 351Google Scholar
[2] Mitra D, Sarkar M, Bhattacharya D, Santra S, Mandal A C, Lapicki G 2010 Nucl. Instrum. Methods B 268 450Google Scholar
[3] Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods B 267 1767
[4] Beasley D, Gomez-Morilla I, Spyrou N 2008 J. Radioanal. Nucl. Chem. 276 101Google Scholar
[5] Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Surf. Sci. Rep. 61 23
[6] Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods B 416 94
[7] Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401
[8] Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644
[9] Mohan H, Jain A K, Kaur M, Singh P S, Sharma S 2014 Nucl. Instrum. Methods B 332 103
[10] Merlet C, Llovet X, Salvat F 2004 Phys. Rev. A 69 032708
[11] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 69 043201Google Scholar
Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar
[12] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 67 243201Google Scholar
Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar
[13] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 66 143401Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar
[14] 张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006
Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci. Sin.-Phys. Mech. Astron. 46 073006
[15] 何斌, 刘春雷, 颜君, 王建国, 宁烨 2005 54 3075Google Scholar
He B, Liu C L, Yan J, Wang J G, Ning Y 2005 Acta Phys. Sin. 54 3075Google Scholar
[16] Briand J P, Billy L, Charles P, Essabaa S 1990 Phys. Rev. Lett. 65 159
[17] Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar
[18] Briand J P, Thuriez S, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C 1996 Phys. Rev. Lett. 77 1452
[19] Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar
[20] Mcguire J H, Richards P 1973 Phys. Rev. A 8 1374
[21] Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1
[22] Lapicki G, Mcdaniel F D 1980 Phys. Rev. A 22 1896Google Scholar
[23] Słabkowska K, Polasik M 2006 Radiat. Phys. Chem. 75 1471
[24] Czarnota M, Pajek M, Banas D, Chmielewska D, Rzadkiewicz J, Sujkowski Z, Dousse J C, Berset M, Mauron O, Maillard Y P, Raboud P A, Hoszowska J, Polasik M, łabkowska K S 2003 Nucl. Instrum. Methods B 205 133
[25] Clark M W, Schneider D, Dewitt D, McDonald J W, Bruch R, Schuch R 1993 Phys. Rev. A 47 3983Google Scholar
[26] Zhao Y, Xiao G, Zhang X, Yang Z, Zhang Y, Zhan W, Chen X, Li F 2007 Nucl. Instrum. Methods B 258 121
[27] Datz S, Moak C D, Appleton B R, Carlson T A 1971 Phys. Rev. Lett. 27 363
[28] X-ray data book: http://xdb.lbl.gov/; Table of Isotopes: http://ie.lbl.gov/atom.htm
[29] Krause M O 1979 J. Phys. Chem. Ref. Data. 8 307
[30] Crawford J, Cohen D, Doherty G, Atanacio A 2011 Calculated K, L and M-shell X-ray Line Intensities for Light ion Impact on Selected Targets from Z = 6 to 100 (Sydney: Australian Nuclear Science and Technology Organization) pp29−44
-
表 1 4.5 MeV I20+离子作用于不同靶材产生I的L壳层分支X射线能量, 作为对比, 第一行给出了单电离的原子数据, 实验误差主要来源于谱线的拟合误差
Table 1. The energies of I L-subshell X-ray produced by 4.5 MeV I20+ ions impacting on various targets.
Lι/eV ± 3 eV Lα1, 2/eV ± 3 eV Lβ1, 3, 4/eV ± 5 eV Lβ2, 15/eV ± 5 eV Lγ1/eV ± 7 eV Lγ2, 3, 4, 4' /eV ± 9 eV Atomic[28] 3485 3937 4227 4508 4802 5065 Fe 3532 3966 4293 4631 4898 5192 Co 3529 3968 4293 4630 4904 5196 Ni 3532 3967 4292 4627 4896 5196 Cu 3529 3968 4297 4631 4909 5200 Zn 3529 3969 4299 4639 4907 5207 Average 3530 3968 4295 4632 4902 5198 -
[1] Siddique N, Waheed S, Daud M, Markwitz A, Hopke P K 2012 J. Radioanal. Nucl. Chem. 293 351Google Scholar
[2] Mitra D, Sarkar M, Bhattacharya D, Santra S, Mandal A C, Lapicki G 2010 Nucl. Instrum. Methods B 268 450Google Scholar
[3] Reyes-Herrera J, Miranda J 2009 Nucl. Instrum. Methods B 267 1767
[4] Beasley D, Gomez-Morilla I, Spyrou N 2008 J. Radioanal. Nucl. Chem. 276 101Google Scholar
[5] Schenkel T, Hamza A V, Barnes A V, Schneider D H 1999 Surf. Sci. Rep. 61 23
[6] Zhou X M, Cheng R, Zhao Y T, Lei Y, Chen Y H, Chen X M, Wang Y Y, Ma X W, Xiao G Q 2018 Nucl. Instrum. Methods B 416 94
[7] Whilhelm R A, Gruber E, Schwestka J, Kozubek R, Madeira T I, Marques J P, Kobus J, Krasheninnikov A V, Schleberger M, Aumayr F 2017 Phys. Rev. Lett. 119 103401
[8] Guo Y P, Yang Z H, Hu B T, Wang X L, Song Z Y, Xu Q M, Zhang B L, Chen J, Yang B, Yang J 2016 Sci. Rep. 6 30644
[9] Mohan H, Jain A K, Kaur M, Singh P S, Sharma S 2014 Nucl. Instrum. Methods B 332 103
[10] Merlet C, Llovet X, Salvat F 2004 Phys. Rev. A 69 032708
[11] 柳钰, 徐忠锋, 王兴, 曾利霞, 刘婷 2020 69 043201Google Scholar
Liu Y, Xu Z F, Wang X, Zeng L X, Liu T 2020 Acta Phys. Sin. 69 043201Google Scholar
[12] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青 2018 67 243201Google Scholar
Liang C H, Zhang X A, Li Y Z, Zhao Y T, Zhou X M, Wang X, Mei C X, Xiao G Q 2018 Acta Phys. Sin. 67 243201Google Scholar
[13] 梅策香, 张小安, 周贤明, 赵永涛, 任洁茹, 王兴, 雷瑜, 孙渊博, 程锐, 徐戈, 曾利霞 2017 66 143401Google Scholar
Mei C X, Zhang X A, Zhou X M, Zhao Y T, Ren J R, Wang X, Lei Y, Sun Y B, Cheng R, Xu G, Zeng L X 2017 Acta Phys. Sin. 66 143401Google Scholar
[14] 张小安, 梅策香, 张颖, 赵永涛, 徐忠峰, 周贤明, 任洁茹, 程锐, 梁昌慧, 李耀宗, 曾丽霞, 杨治虎, 陈熙萌, 李福利, 肖国庆 2016 中国科学: 物理学 力学 天文学 46 073006
Zhang X A, Mei C X, Zhang Y, Zhao Y T, Xu Z F, Zhou X M, Ren J R, Cheng R, Liang C H, Li Y Z, Zeng L X, Yang Z H, Chen X M, Li F L, Xiao G Q 2016 Sci. Sin.-Phys. Mech. Astron. 46 073006
[15] 何斌, 刘春雷, 颜君, 王建国, 宁烨 2005 54 3075Google Scholar
He B, Liu C L, Yan J, Wang J G, Ning Y 2005 Acta Phys. Sin. 54 3075Google Scholar
[16] Briand J P, Billy L, Charles P, Essabaa S 1990 Phys. Rev. Lett. 65 159
[17] Briand J P, de Billy L, Charles P, et al. 1991 Phys. Rev. A 43 565Google Scholar
[18] Briand J P, Thuriez S, Giardino G, Borsoni G, Froment M, Eddrief M, Sébenne C 1996 Phys. Rev. Lett. 77 1452
[19] Burgdörfer J, Lerner P, Meyer F W 1991 Phys. Rev. A 44 5674Google Scholar
[20] Mcguire J H, Richards P 1973 Phys. Rev. A 8 1374
[21] Johnson D E, Basbas G, McDaniel F D 1979 At. Data Nucl. Data tables 24 1
[22] Lapicki G, Mcdaniel F D 1980 Phys. Rev. A 22 1896Google Scholar
[23] Słabkowska K, Polasik M 2006 Radiat. Phys. Chem. 75 1471
[24] Czarnota M, Pajek M, Banas D, Chmielewska D, Rzadkiewicz J, Sujkowski Z, Dousse J C, Berset M, Mauron O, Maillard Y P, Raboud P A, Hoszowska J, Polasik M, łabkowska K S 2003 Nucl. Instrum. Methods B 205 133
[25] Clark M W, Schneider D, Dewitt D, McDonald J W, Bruch R, Schuch R 1993 Phys. Rev. A 47 3983Google Scholar
[26] Zhao Y, Xiao G, Zhang X, Yang Z, Zhang Y, Zhan W, Chen X, Li F 2007 Nucl. Instrum. Methods B 258 121
[27] Datz S, Moak C D, Appleton B R, Carlson T A 1971 Phys. Rev. Lett. 27 363
[28] X-ray data book: http://xdb.lbl.gov/; Table of Isotopes: http://ie.lbl.gov/atom.htm
[29] Krause M O 1979 J. Phys. Chem. Ref. Data. 8 307
[30] Crawford J, Cohen D, Doherty G, Atanacio A 2011 Calculated K, L and M-shell X-ray Line Intensities for Light ion Impact on Selected Targets from Z = 6 to 100 (Sydney: Australian Nuclear Science and Technology Organization) pp29−44
计量
- 文章访问数: 5086
- PDF下载量: 75
- 被引次数: 0