Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fast fluorescence lifetime microscopy imaging of any number of discrete irregular regions of interest

Niu Jing-Jing Liu Xiong-Bo Chen Peng-Fa Yu Bin Yan Wei Qu Jun-Le Lin Dan-Ying

Citation:

Fast fluorescence lifetime microscopy imaging of any number of discrete irregular regions of interest

Niu Jing-Jing, Liu Xiong-Bo, Chen Peng-Fa, Yu Bin, Yan Wei, Qu Jun-Le, Lin Dan-Ying
PDF
HTML
Get Citation
  • Fluorescence lifetime imaging microscopy (FLIM) has been widely used in biomedical research due to its high specificity, high sensitivity and quantification ability in cell microenvironment sensing. The fluorescence lifetime detection method based on time-correlated single photon counting (TCSPC) is one of the most commonly used techniques at present. However, due to the limitation of imaging principles and conditions, this technique has the disadvantages of long data acquisition time and consequently low imaging speed. In this paper, a fast FLIM technique for any number of discrete and irregular regions of interest (ROIs) in biological samples is developed. The technology uses acousto-optic deflectors (AODs) to achieve fast and flexible addressing scanning, optimize the synchronization strategy between AOD and TCSPC, and reconstruct the lifetime image through simple online feature analysis of the ROI shapes. For the case of multiple discrete irregular ROIs in biological samples, it can greatly save the time of data acquisition, thus realizing the fast FLIM imaging of these ROIs, which is benificial to the study of the heterogeneity of biological events in biological system. In particular, the fast fluorescence imaging result for 87 discrete points in the field of view shows that this method can obtain a fluorescence lifetime image in a very short acquisition time (only 52.2 ms) and thus achieving a very fast imaging speed in such a situation. Dynamic FLIM imaging of lysosome probe LysoSensor Green DND-189 in living cells stimulated by ammonium chloride is carried out to monitor the real-time change of pH value in lysosome lumen. The acquisition time for a single fluorescence lifetime image of lysosomes in two ROIs is only 200 ms. The results show that the rapid FLIM technology can be used to dynamically monitor the changes of microenvironment in biological samples, and will play an important role in the microenvironment sensing in living cells.
      Corresponding author: Lin Dan-Ying, dylin@szu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0700500), the National Natural Science Foundation of China (Grant Nos. 61775144, 61975131, 61620106016), and the Shenzhen Basic Research Project, China (Grant Nos. JCYJ20200109105411133, JCYJ20170412105003520)
    [1]

    Becker W 2012 J. Microsc. 247 119Google Scholar

    [2]

    刘雄波, 林丹樱, 吴茜茜, 严伟, 罗腾, 杨志刚, 屈军乐 2018 67 178701Google Scholar

    Liu X B, Lin D Y, Wu Q Q, Yan W, Luo T, Yang Z G, Qu J L 2018 Acta Phys. Sin. 67 178701Google Scholar

    [3]

    Bower A J, Li J, Chaney E J, Marjanovic M, Spillman D R, Boppart S A 2018 Optica 5 1290Google Scholar

    [4]

    Datta R, Heaster T M, Sharick J T, Gillette A A, Skala M C 2020 J. Biomed. Opt. 25 071203Google Scholar

    [5]

    Hirvonen L M, Suhling K 2020 Front. Phys. 8 161Google Scholar

    [6]

    Suhling K, Hirvonen L M, Levitt J A, Chung P H, Tregidgo C, Marois A L, Rusakov D A, Zheng K, Ameer-Beg S, Poland S, Coelho S, Henderson R, Krstajic N 2015 Med. Photon. 27 3Google Scholar

    [7]

    Liu X B, Lin D Y, Becker W, Niu J J, Yu B, Liu L W, Qu J L 2019 J. Innov. Opt. Health Sci. 12 1930003Google Scholar

    [8]

    Ranjit S, Malacrida L, Stakic M, Gratton E 2019 J. Biophotonics. 12 e201900156Google Scholar

    [9]

    林丹樱, 牛敬敬, 刘雄波, 张潇, 张娇, 于斌, 屈军乐 2020 69 168703Google Scholar

    Lin D Y, Niu J J, Liu X B, Zhang X, Zhang J, Yu B, Qu J L 2020 Acta Phys. Sin. 69 168703Google Scholar

    [10]

    Cominelli A, Acconcia G, Peronio P, Ghioni M, Rech I 2017 Rev. Sci. Instrum. 88 123701Google Scholar

    [11]

    Vallmitjana A, Torrado B, Dvorbikov A, Ranjit S, Gratton E 2020 J. Phys. Chem. B 124 10126Google Scholar

    [12]

    Hirmiz N, Tsikouras A, Osterlund E J, Richards M, Andrews D W, Fang Q 2021 Opt. Lett. 45 69Google Scholar

    [13]

    Wang L, Liang X, Mohammed Y H, Thomas J A, Bridle K R, Thorling C A, Grice J E, Xu Z P, Liu X, Crawford D H G, Roberts M S 2015 Biomed. Opt. Express 6 780Google Scholar

    [14]

    Grewe B F, Langer D, Kasper H, Kampa B M, Helmchen F 2010 Nat. Methods 7 399Google Scholar

    [15]

    Gershow M H, Karagyozov D, Yamaguchi A 2021 Opt. Lett. 46 1644Google Scholar

    [16]

    Qi J, Shao Y H, Liu L X, Wang K G, Chen T S, Qu J L, Niu H B 2013 Opt. Lett. 38 1697Google Scholar

    [17]

    Yan W, Peng X, Qi J, Gao J, Fan S P, Wang Q, Qu J L, Niu H B 2014 J. Biomed. Opt. 19 116004Google Scholar

    [18]

    Zeng S, Lv X, Bi K, Zhan C, Li D, Chen W R, Xiong W, Jacques S L, Luo Q 2007 J. Biomed. Opt. 12 024015Google Scholar

    [19]

    Wu Q Q, Qi J, Lin D Y, Yan W, Hu R, Peng X, Qu J L 2017 Proc. SPIE 10069 1006922Google Scholar

    [20]

    Lin H J, Herman P, Kang J S, Lakowicz J R 2001 Anal. Biochem. 294 118Google Scholar

  • 图 1  快速FLIM系统示意图

    Figure 1.  Schematic diagram of fast FLIM system.

    图 2  AOD扫描信号及其与TCSPC的同步原理示意图 (a)数字信号及三路同步信号; (b) AOD扫描过程; (c) AOD-TCSPC同步过程

    Figure 2.  Schematic diagram of AOD scanning signal and its synchronization principle with TCSPC: (a) Digital signal and three synchronization signals; (b) AOD scanning process; (c) AOD-TCSPC synchronization process.

    图 3  针对任意数量离散不规则ROI的同步信号产生新策略示意图 (a)三个离散的不同形状ROI(灰色); (b)每个扫描点所需的同步信号; (c)按新策略产生的三路同步信号; (d)已分行存储但仍未准确映射的荧光寿命数据

    Figure 3.  Schematic diagram of a new strategy for generating synchronization signals for any number of discrete irregular ROIs: (a) Three discrete ROIs of different shapes (gray); (b) the synchronization signals required for each scan point; (c) three synchronization signals generated according to the new strategy; (d) fluorescence lifetime image data that has been stored in rows before mapping.

    图 4  寿命数据处理方法示意图 (a)扫描ROI; (b)外接矩形; (c)二值化矩阵; (d)二值化矩阵非零元素列坐标; (e)寿命数据顺序存储列坐标; (f) X方向移位矩阵; (g)二值化矩阵非零元素行坐标; (h)寿命数据顺序存储行坐标; (i) Y方向移位矩阵; (j)未移位的寿命图像; (k) X方向移位后的寿命图像; (l) Y方向移位后的准确寿命图像

    Figure 4.  Schematic diagram of the processing method for the lifetime image data: (a) Scanned ROIs; (b) circumscribed rectangle; (c) binarized matrix; (d) column coordinates of non-zero elements in the binarized matrix; (e) column coordinates of the lifetime data before mapping; (f) shift matrix in X-direction; (g) row coordinates of non-zero elements in the binarized matrix; (h) row coordinates of the lifetime data before mapping; (i) shift matrix in Y-direction; (j) lifetime image before mapping; (k) lifetime image after shift in X-direction; (l) correct lifetime image after shift in Y-direction.

    图 5  铃兰根茎切片样品多个离散的不同形状ROI的FLIM成像 (a)明场图像及ROI的选取; (b) EMCCD采集的荧光强度图像; (c) TCSPC采集得到的寿命图像; (d)准确重构的荧光寿命图像

    Figure 5.  FLIM imaging of multiple discrete ROIs of different shapes in convallaria slice sample: (a) Bright field image collected by EMCCD and selection of ROIs; (b) fluorescence intensity image collected by EMCCD; (c) lifetime image collected by TCSPC; (d) corrected fluorescence lifetime image.

    图 6  铃兰根茎切片样品环形ROI的FLIM成像 (a)环形ROI的选取; (b) EMCCD采集的荧光强度图像; (c) TCSPC采集的荧光强度图像; (d)荧光寿命图像

    Figure 6.  FLIM imaging of a circular ROI in convallaria slice sample: (a) Selection of the circular ROI; (b) fluorescence intensity image collected by EMCCD; (c) fluorescence intensity image collected by TCSPC; (d) fluorescence lifetime image.

    图 7  铃兰根茎切片样品矩形ROI的FLIM成像 (a)矩形ROI的选取; (b) EMCCD采集的荧光强度图像; (c) TCSPC采集的荧光强度图像; (d)荧光寿命图像

    Figure 7.  FLIM imaging of a rectangular ROI in convallaria slice sample: (a) Selection of the rectangular ROI; (b) fluorescence intensity image collected by EMCCD; (c) fluorescence intensity image collected by TCSPC; (d) fluorescence lifetime image.

    图 8  罗丹明6G溶液样品中离散点的快速FLIM成像  (a)离散像素点的选取; (b) EMCCD采集的荧光强度图像; (c) TCSPC采集的荧光强度图像; (d)荧光寿命图像

    Figure 8.  Fast FLIM imaging of discrete pixels in rhodamine 6G solution: (a) Selection of the discrete pixels; (b) fluorescence intensity image collected by EMCCD; (c) fluorescence intensity image collected by TCSPC; (d) fluorescence lifetime image.

    图 9  活细胞中LysoSensor-DND189标记溶酶体的快速FLIM成像 (a)明场图像; (b) EMCCD采集的荧光强度图像及ROI的选取; (c) ROI平均荧光寿命随氯化铵刺激时间的变化; (d)部分时间点的荧光寿命图像

    Figure 9.  Fast FLIM imaging of LysoSensor-DND189 labeled lysosomes in living cells: (a) Bright field image; (b) fluorescence intensity image collected by EMCCD and selection of ROIs; (c) the change of the average fluorescence lifetime in the ROIs with the stimulation time of ammonium chloride; (d) the fluorescence lifetime image of selected time points.

    Baidu
  • [1]

    Becker W 2012 J. Microsc. 247 119Google Scholar

    [2]

    刘雄波, 林丹樱, 吴茜茜, 严伟, 罗腾, 杨志刚, 屈军乐 2018 67 178701Google Scholar

    Liu X B, Lin D Y, Wu Q Q, Yan W, Luo T, Yang Z G, Qu J L 2018 Acta Phys. Sin. 67 178701Google Scholar

    [3]

    Bower A J, Li J, Chaney E J, Marjanovic M, Spillman D R, Boppart S A 2018 Optica 5 1290Google Scholar

    [4]

    Datta R, Heaster T M, Sharick J T, Gillette A A, Skala M C 2020 J. Biomed. Opt. 25 071203Google Scholar

    [5]

    Hirvonen L M, Suhling K 2020 Front. Phys. 8 161Google Scholar

    [6]

    Suhling K, Hirvonen L M, Levitt J A, Chung P H, Tregidgo C, Marois A L, Rusakov D A, Zheng K, Ameer-Beg S, Poland S, Coelho S, Henderson R, Krstajic N 2015 Med. Photon. 27 3Google Scholar

    [7]

    Liu X B, Lin D Y, Becker W, Niu J J, Yu B, Liu L W, Qu J L 2019 J. Innov. Opt. Health Sci. 12 1930003Google Scholar

    [8]

    Ranjit S, Malacrida L, Stakic M, Gratton E 2019 J. Biophotonics. 12 e201900156Google Scholar

    [9]

    林丹樱, 牛敬敬, 刘雄波, 张潇, 张娇, 于斌, 屈军乐 2020 69 168703Google Scholar

    Lin D Y, Niu J J, Liu X B, Zhang X, Zhang J, Yu B, Qu J L 2020 Acta Phys. Sin. 69 168703Google Scholar

    [10]

    Cominelli A, Acconcia G, Peronio P, Ghioni M, Rech I 2017 Rev. Sci. Instrum. 88 123701Google Scholar

    [11]

    Vallmitjana A, Torrado B, Dvorbikov A, Ranjit S, Gratton E 2020 J. Phys. Chem. B 124 10126Google Scholar

    [12]

    Hirmiz N, Tsikouras A, Osterlund E J, Richards M, Andrews D W, Fang Q 2021 Opt. Lett. 45 69Google Scholar

    [13]

    Wang L, Liang X, Mohammed Y H, Thomas J A, Bridle K R, Thorling C A, Grice J E, Xu Z P, Liu X, Crawford D H G, Roberts M S 2015 Biomed. Opt. Express 6 780Google Scholar

    [14]

    Grewe B F, Langer D, Kasper H, Kampa B M, Helmchen F 2010 Nat. Methods 7 399Google Scholar

    [15]

    Gershow M H, Karagyozov D, Yamaguchi A 2021 Opt. Lett. 46 1644Google Scholar

    [16]

    Qi J, Shao Y H, Liu L X, Wang K G, Chen T S, Qu J L, Niu H B 2013 Opt. Lett. 38 1697Google Scholar

    [17]

    Yan W, Peng X, Qi J, Gao J, Fan S P, Wang Q, Qu J L, Niu H B 2014 J. Biomed. Opt. 19 116004Google Scholar

    [18]

    Zeng S, Lv X, Bi K, Zhan C, Li D, Chen W R, Xiong W, Jacques S L, Luo Q 2007 J. Biomed. Opt. 12 024015Google Scholar

    [19]

    Wu Q Q, Qi J, Lin D Y, Yan W, Hu R, Peng X, Qu J L 2017 Proc. SPIE 10069 1006922Google Scholar

    [20]

    Lin H J, Herman P, Kang J S, Lakowicz J R 2001 Anal. Biochem. 294 118Google Scholar

  • [1] Zhang Yang, Zhang Zhi-Hao, Wang Yu-Jian, Xue Xiao-Lan, Chen Ling-Xiu, Shi Li-Wei. Polarization modulation scanning optical microscopy method. Acta Physica Sinica, 2024, 73(15): 157801. doi: 10.7498/aps.73.20240688
    [2] Pan Bin-Xiong, Gong Cheng, Zhang Peng, Liu Zi-Ye, Pi Peng-Jian, Chen Wang, Huang Wen-Qiang, Wang Bao-Ju, Zhan Qiu-Qiang. Advances in high spatiotemporal resolution fluorescence microscopic imaging technique based on point scanning. Acta Physica Sinica, 2023, 72(20): 204201. doi: 10.7498/aps.72.20230912
    [3] Qian Huang-He, Wang Di, Han Tao, Ding Zhi-Hua. A method of fast locating discrete interface based on phase information of complex master-slave optical coherence tomography. Acta Physica Sinica, 2022, 71(21): 214202. doi: 10.7498/aps.71.20220444
    [4] Zhang Jing-Na, Zhang Hui-Tao, Xu Wen-Feng, Zhu Yi-Ning, Deng Shi-Wo, Zhu Pei-Ping. Method of reconstructing region of interest for differential phase contrast computed tomography imaging. Acta Physica Sinica, 2021, 70(11): 118702. doi: 10.7498/aps.70.20202192
    [5] Wang Mei-Chang, Yu Bin, Zhang Wei, Lin Dan-Ying, Qu Jun-Le. Digital line scanning fluorescence microscopy based on digital micromirror device. Acta Physica Sinica, 2020, 69(23): 238701. doi: 10.7498/aps.69.20200908
    [6] Liu Xiong-Bo, Lin Dan-Ying, Wu Qian-Qian, Yan Wei, Luo Teng, Yang Zhi-Gang, Qu Jun-Le. Recent progress of fluorescence lifetime imaging microscopy technology and its application. Acta Physica Sinica, 2018, 67(17): 178701. doi: 10.7498/aps.67.20180320
    [7] Zhao Guang-Yuan, Zheng Cheng, Fang Yue, Kuang Cui-Fang, Liu Xu. Progress of point-wise scanning superresolution methods. Acta Physica Sinica, 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [8] Wang Pan-Pan, Yao Xu-Ri, Liu Xue-Feng, Yu Wen-Kai, Qiu Peng, Zhai Guang-Jie. Moving target compressive imaging based on improved row scanning measurement matrix. Acta Physica Sinica, 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [9] Wan Wen-Bo, Hua Deng-Xin, Le Jing, Yan Zhe, Zhou Chun-Yan. Study of plant fluorescence properties based on laser-induced chlorophyll fluorescence lifetime imaging technology. Acta Physica Sinica, 2015, 64(19): 190702. doi: 10.7498/aps.64.190702
    [10] Wang Xiao-Bing, Liang Zi-Chang, Wu Zhen-Sen. Fast parallel iterative calculating of the composite scattering between targets and rough surface. Acta Physica Sinica, 2012, 61(12): 124104. doi: 10.7498/aps.61.124104
    [11] Yan Fen, Zhang Ji-Chao, Li Ai-Guo, Yang Ke, Wang Hua, Mao Cheng-Wen, Liang Dong-Xu, Yan Shuai, Li Jiong, Yu Xiao-Han. Fast scanning X-ray microprobe fluorescence imaging based on synchrotron radiation. Acta Physica Sinica, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [12] He Si-Hua, Yang Shao-Qing, Shi Ai-Guo, Li Tian-Wei. Detection of ship targets on the sea surface based on Lyapunov exponents of image block. Acta Physica Sinica, 2009, 58(2): 794-801. doi: 10.7498/aps.58.794
    [13] Ye Hong-Xia, Jin Ya-Qiu. A novel approach of dual GPOF /DCIM for fast computation of the sommerfeld integrals and electromagnetic scattering from an object partially embedded in dielectric half-space. Acta Physica Sinica, 2009, 58(7): 4579-4589. doi: 10.7498/aps.58.4579
    [14] Guo Hai-Ming, Liu Hong-Wen, Wang Ye-Liang, Xie Hui-Min, Dai Fu-Long, Gao Hong-Jun. Moiré fringes of HOPG and mica in scanning probe microscopy. Acta Physica Sinica, 2003, 52(10): 2514-2519. doi: 10.7498/aps.52.2514
    [15] Wang Qian, Xu Jin-Qiang, Wu Jin, Li Yong-Gui. The imaging of chemical samples with a scanning near-field infrared microscope. Acta Physica Sinica, 2003, 52(2): 298-301. doi: 10.7498/aps.52.298
    [16] WANG ZI-YANG, LI QIN, ZHAO JUN, GUO JI-HUA. STUDY OF THE DISTRIBUTION OF LIGHT INTENSITY OF THE FIBER PROBE OF TRANSMISSION SCANNING NEAR FIELD OPTICAL MICROSCOPY AND THE DISTRIBUTION OF EXCITED FLUORESCE NT MOLECULES. Acta Physica Sinica, 2000, 49(10): 1959-1964. doi: 10.7498/aps.49.1959
    [17] MA ZHAO-MIAN, TAO CHUN-KAN. REGIONAL FRACTAL AND ARTIFICIAL OBJECT DETECTION. Acta Physica Sinica, 1999, 48(12): 2202-2207. doi: 10.7498/aps.48.2202
    [18] CAI QUN, WU LEI, ZHU ANG-RU, WANG XUN. STM IMAGES OF NaCI MICROCRYSTAL IN THE AIR. Acta Physica Sinica, 1993, 42(8): 1266-1271. doi: 10.7498/aps.42.1266
    [19] SU FANG, YU WEI-ZHONG, DAI DAO-YANG, ZHAO ZONG-YUAN. POSITRON LIFETIME SPECTRA AND SCANNING ELECTRON MICROSCOPE INVESTIGATIONS DURING THE CRYSTAL-LIZATION PROCESS OF AMORPHOUS IONIC CONDUCTOR B2O3-0.7Li2O-0.7LiCl-xAl2O3. Acta Physica Sinica, 1985, 34(5): 622-627. doi: 10.7498/aps.34.622
    [20] ZHANG SHU-YI, YU CHAO, MIAO YONG-ZHI, TANG ZHENG-YAN, GAO DUN-TANG. SCANNING PHOTOACOUSTIC MICROSCOPY. Acta Physica Sinica, 1982, 31(5): 704-708. doi: 10.7498/aps.31.704
Metrics
  • Abstract views:  5292
  • PDF Downloads:  100
  • Cited By: 0
Publishing process
  • Received Date:  18 May 2021
  • Accepted Date:  31 May 2021
  • Available Online:  07 June 2021
  • Published Online:  05 October 2021

/

返回文章
返回
Baidu
map