Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation of focusing ring of metalens and its application in optical trapping of cold molecules

Li Jun-Yi Ye Yu-Er Ling Chen Li Lin Liu Yang Xia Yong

Citation:

Generation of focusing ring of metalens and its application in optical trapping of cold molecules

Li Jun-Yi, Ye Yu-Er, Ling Chen, Li Lin, Liu Yang, Xia Yong
PDF
HTML
Get Citation
  • Metasurface can precisely control degrees of freedom of the phase, polarization, and amplitude of the incident light field. It provides a new way to develop the next generation of the experimental platform of quantum-state manipulation on-chip, which has important application prospects. This paper proposes a new type of metasurface structure, that is, a metalens composed of silicon grating elements with different duty ratios that can form a focusing ring on the focal plane. The intensity distribution of the ring light field in the focal plane and the focusing characteristics of metalens with different numerical apertures are studied. An optical storage ring of magnesium fluoride (MgF) molecule is constructed by using this kind of metalens focusing ring. The optical potential and dipole force of the MgF molecule in the focused light field are calculated, and the dynamic process of MgF molecule motion in the storage ring is simulated by the Monte-Carlo method. The research results show that for the incident light of 1064-nm radially polarized light, the designed metasurface structure has good focusing characteristics, and the light field intensity of the focusing ring is 55.1 times stronger than that of the incident light. The focal length of the annular light field is 22 μm and the full width at half maximum of the light intensity distribution in the focal plane is 0.8 μm, and the numerical aperture of the hyperlens is 0.69. The maximum dipole potential of MgF molecules in the light field is 32 μK, which can realize the loading of MgF molecules and trap them in the surface storage ring.
      Corresponding author: Liu Yang, liuyang59@mail.sysu.edu.cn ; Xia Yong, yxia@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91836103, 11974434) and the Natural Science Foundation of Guangdong Province(Grant No. 2020A1515011159)
    [1]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 123009

    [2]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [3]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [4]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 1

    [5]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [6]

    Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H 2017 Nat. Commun. 8 1Google Scholar

    [7]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H 2018 Nat. Nanotech. 13 227Google Scholar

    [8]

    Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nature Nanotech. 13 220Google Scholar

    [9]

    王漱明, 李涛, 祝世宁 2018 物理 47 379Google Scholar

    Wang S M, Li T, Zhu S N 2018 Phsics 47 379Google Scholar

    [10]

    肖行健, 祝世宁, 李涛 2020 红外与激光工程 49 61

    Xing X J, Zhu S N, Li T 2020 Infrared Laser Eng. 49 61

    [11]

    欧凯, 郁菲茏, 陈金, 李冠海, 陈效双 2021 红外与激光工程 50 24

    Ou K, Yu F L, Chen J, Li G H, Chen X S 2021 Infrared Laser Eng. 50 24

    [12]

    莫昊燃, 纪子韬, 郑义栋, 梁文耀, 虞华康, 李志远 2021 红外与激光工程 50 40

    Mo H R, Ji Z T, Zheng Y D, Liang W Y, Yu H K, Li Z Y 2021 Infrared Laser Eng. 50 40

    [13]

    Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar

    [14]

    Hinds E, Hughes I 1999 J. Phys. D Appl. Phys. 32 R119Google Scholar

    [15]

    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom Mol. Opt. Phy. 48 263

    [16]

    Kitching J 2018 Phys. Rev. Appl. 5 031302Google Scholar

    [17]

    Nshii C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E, Ironside C N, See P, Sinclair A, Riis E, Arnold A S 2013 Nat. Nanotech. 8 321Google Scholar

    [18]

    Imhof E, Stuhl B K, Kasch B, Kroese B, Olson S E, Squires M B 2017 Phys. Rev. A 96 033636Google Scholar

    [19]

    McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 1Google Scholar

    [20]

    Zhu L, Liu X, Sain B, Wang M, Schlickriede C, Tang Y, Deng J, Li K, Yang J, Holynski M, Zhang S, Zentgraf T, Bongs K, Lien Y-H, Li G 2020 Sci. Adv. 6 eabb6667Google Scholar

    [21]

    Barker D, Norrgard E, Klimov N, Fedchak J, Scherschligt J, Eckel S 2019 Phys. Rev. Appl. 11 064023Google Scholar

    [22]

    Elvin R, Hoth G W, Wright M, Lewis B, McGilligan J P, Arnold A S, Griffin P F, Riis E 2019 Opt. Express 27 38359Google Scholar

    [23]

    Cai W, Yu H, Xu S, Xia M, Li T, Yin Y, Xia Y, Yin J 2018 J. Opt. Soc. Am. B 35 3049Google Scholar

    [24]

    Yu H, Mao Z, Li J, Ye Y, Yin Y, Xia Y, Yin J 2020 J. Opt. 2 2

    [25]

    Crompvoets F M, Bethlem H L, Jongma R T, Meijer G 2001 Nature 411 174Google Scholar

    [26]

    Van der Poel A P, Dulitz K, Softley T P, Bethlem H L 2015 New J. Phys. 17 055012Google Scholar

    [27]

    Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. 14 890Google Scholar

    [28]

    Yan K, Wei B, Yin Y, Xu S, Xu L, Xia M, Gu R, Xia Y, Yin J 2020 New J. Phys. 22 033003Google Scholar

  • 图 1  (a)单元结构的示意图, Si柱宽度为W, 高度为H, SiO2基底的在周期为P; (b)和(c)分别表示扫描单元衬底周期和占空比得到的相位、透射率二维图; (d)当P = 380 nm时, 相位和透射率分别与占空比之间的关系, 黑色实线为透射率曲线, 红色实线为相位变化曲线

    Figure 1.  (a) Schematic diagram of the unit structure, the width of the Si column is W, the height is H, and the period of the SiO2 substrate is P; (b) and (c) represent the two-dimensional diagram of the phase and transmittance obtained by scanning the period and duty cycle of the unit structure, respectively; (d) when P = 380 nm, the dependence of the phase and transmittance on the duty cycle, respectively, the black solid line is the transmittance curve, and the red solid line is the phase change curve.

    图 2  超表面环形透镜设计原理图 (a)超表面环形光场形成的原理图; (b)半径方向截面光栅排布结构示意图; (c)当焦距f = 22 μm时, 对应的相位分布图, 红色实线为所需相位曲线, 蓝色原点为单元结构实际所需的分立相位值

    Figure 2.  Design principle diagram of the metasurface ring lens: (a) Principle diagram of the formation of the ring light field; (b) layout structure diagram of the cross section of the half grating; (c) corresponding phase distribution for f = 22 μm, the red solid line is the required phase curve, and the blue dot is the discrete phase value required by the unit structure.

    图 3  超表面环形光场的光强分布 (a)焦平面上二维光强度分布; (b)焦平面上一维光强度分布

    Figure 3.  Intensity distribution of ring light field on the metasurface: (a) Two-dimensional intensity distribution on focal plane; (b) one-dimensional intensity distribution on focal plane.

    图 4  数值孔径NA对焦平面上聚焦光环的最大光强的影响

    Figure 4.  Effect of numerical aperture NA on the maximum intensity of the ring light field on the focal plane.

    图 5  MgF分子在环形聚焦光场中所受光学势和偶极力(见插图)

    Figure 5.  Optical potential and dipole force(inset firure) of MgF molecule in ring focused light field.

    图 6  MgF分子束在存储环运动若干圈的飞行时间谱. 插图是探测原理示意图

    Figure 6.  Time-of-flight spectrum of MgF molecular beam moving in the storage ring for several cycles. The illustration is the schematic diagram of molecule detection.

    图 7  单个MgF分子在表面储存环中运动运动轨迹图, 其中红色虚线为分子在储存环中运动的俯视图, 也就是运动轨迹在xoy平面的投影

    Figure 7.  Motion trajectory of a single MgF molecule in the surface storage ring, in which the red dotted line is the top view of the motion of the molecule in the storage ring, that is, the projection of the motion trajectory on the xoy plane.

    Baidu
  • [1]

    Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 123009

    [2]

    Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar

    [3]

    Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar

    [4]

    Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 1

    [5]

    Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar

    [6]

    Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H 2017 Nat. Commun. 8 1Google Scholar

    [7]

    Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H 2018 Nat. Nanotech. 13 227Google Scholar

    [8]

    Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nature Nanotech. 13 220Google Scholar

    [9]

    王漱明, 李涛, 祝世宁 2018 物理 47 379Google Scholar

    Wang S M, Li T, Zhu S N 2018 Phsics 47 379Google Scholar

    [10]

    肖行健, 祝世宁, 李涛 2020 红外与激光工程 49 61

    Xing X J, Zhu S N, Li T 2020 Infrared Laser Eng. 49 61

    [11]

    欧凯, 郁菲茏, 陈金, 李冠海, 陈效双 2021 红外与激光工程 50 24

    Ou K, Yu F L, Chen J, Li G H, Chen X S 2021 Infrared Laser Eng. 50 24

    [12]

    莫昊燃, 纪子韬, 郑义栋, 梁文耀, 虞华康, 李志远 2021 红外与激光工程 50 40

    Mo H R, Ji Z T, Zheng Y D, Liang W Y, Yu H K, Li Z Y 2021 Infrared Laser Eng. 50 40

    [13]

    Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar

    [14]

    Hinds E, Hughes I 1999 J. Phys. D Appl. Phys. 32 R119Google Scholar

    [15]

    Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom Mol. Opt. Phy. 48 263

    [16]

    Kitching J 2018 Phys. Rev. Appl. 5 031302Google Scholar

    [17]

    Nshii C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E, Ironside C N, See P, Sinclair A, Riis E, Arnold A S 2013 Nat. Nanotech. 8 321Google Scholar

    [18]

    Imhof E, Stuhl B K, Kasch B, Kroese B, Olson S E, Squires M B 2017 Phys. Rev. A 96 033636Google Scholar

    [19]

    McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 1Google Scholar

    [20]

    Zhu L, Liu X, Sain B, Wang M, Schlickriede C, Tang Y, Deng J, Li K, Yang J, Holynski M, Zhang S, Zentgraf T, Bongs K, Lien Y-H, Li G 2020 Sci. Adv. 6 eabb6667Google Scholar

    [21]

    Barker D, Norrgard E, Klimov N, Fedchak J, Scherschligt J, Eckel S 2019 Phys. Rev. Appl. 11 064023Google Scholar

    [22]

    Elvin R, Hoth G W, Wright M, Lewis B, McGilligan J P, Arnold A S, Griffin P F, Riis E 2019 Opt. Express 27 38359Google Scholar

    [23]

    Cai W, Yu H, Xu S, Xia M, Li T, Yin Y, Xia Y, Yin J 2018 J. Opt. Soc. Am. B 35 3049Google Scholar

    [24]

    Yu H, Mao Z, Li J, Ye Y, Yin Y, Xia Y, Yin J 2020 J. Opt. 2 2

    [25]

    Crompvoets F M, Bethlem H L, Jongma R T, Meijer G 2001 Nature 411 174Google Scholar

    [26]

    Van der Poel A P, Dulitz K, Softley T P, Bethlem H L 2015 New J. Phys. 17 055012Google Scholar

    [27]

    Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. 14 890Google Scholar

    [28]

    Yan K, Wei B, Yin Y, Xu S, Xu L, Xia M, Gu R, Xia Y, Yin J 2020 New J. Phys. 22 033003Google Scholar

  • [1] Wang Yue, Wang Hao-Jie, Cui Zi-Jian, Zhang Da-Chi. Bound states in continuum domain of double resonant ring metal metasurfaces. Acta Physica Sinica, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] Zhang Xiang, Wang Yue, Zhang Wan-Ying, Zhang Xiao-Ju, Luo Fan, Song Bo-Chen, Zhang Kuang, Shi Wei. Narrow band absorption and sensing properties of the THz metasurface based on single-walled carbon nanotubes. Acta Physica Sinica, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] Lai Zhen-Xin, Zhang Ye, Zhong Fan, Wang Qiang, Xiao Yan-Ling, Zhu Shi-Ning, Liu Hui. Wavelength-selective thermal emission metasurfaces based on synthetic dimensional topological Weyl points. Acta Physica Sinica, 2024, 73(11): 117802. doi: 10.7498/aps.73.20240512
    [4] Li Hao, Pang Yong-Qiang, Qu Bing-Yue, Zheng Jiang-Shan, Xu Zhuo. Optical transparent metasurface lenses and their wireless communication efficiency enhancement. Acta Physica Sinica, 2024, 73(14): 144104. doi: 10.7498/aps.73.20240464
    [5] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [6] Liu You-Hai, Qin Tian-Xiang, Wang Ying-Ce, Kang Xing-Wang, Liu Jun, Wu Jia-Chen, Cao Liang-Cai. Research advances in simple and compact optical imaging techniques. Acta Physica Sinica, 2023, 72(8): 084205. doi: 10.7498/aps.72.20230092
    [7] Huang Xiao-Jun, Gao Huan-Huan, He Jia-Hao, Luan Su-Zhen, Yang He-Lin. Dynamically tunable frequency-domain multifunctional reconfigurable polarization conversion metasurface. Acta Physica Sinica, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [8] Fan Hui-Ying, Luo Jie. Research progress of non-Hermitian electromagnetic metasurfaces. Acta Physica Sinica, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [9] Sun Sheng, Yang Ling-Jun, Sha Wei. Offset-fed vortex wave generator based on reflective metasurface. Acta Physica Sinica, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [10] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [11] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [12] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [13] Yan Wei, Wang Ji-Yong, Qu Yu-Rui, Li Qiang, Qiu Min. Tunable metasurfaces based on phase-change materials. Acta Physica Sinica, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [14] Li Xiao-Nan, Zhou Lu, Zhao Guo-Zhong. Terahertz vortex beam generation based on reflective metasurface. Acta Physica Sinica, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] Fan Qing-Bin, Xu Ting. Research progress of imaging technologies based on electromagnetic metasurfaces. Acta Physica Sinica, 2017, 66(14): 144208. doi: 10.7498/aps.66.144208
    [16] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] Fan Ya, Qu Shao-Bo, Wang Jia-Fu, Zhang Jie-Qiu, Feng Ming-De, Zhang An-Xue. Broadband anomalous reflector based on cross-polarized version phase gradient metasurface. Acta Physica Sinica, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [18] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Chen Hong-Ya, Xu Zhuo, Zhang An-Xue. Design and experimental verification of a two-dimensional phase gradient metasurface used for radar cross section reduction. Acta Physica Sinica, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] Chen Yong-Yi, Qin Li, Tong Cun-Zhu, Wang Li-Jun. Numerical study of surface plasmon polariton coupling on the metal-insulator hybrid gratings. Acta Physica Sinica, 2013, 62(16): 167301. doi: 10.7498/aps.62.167301
Metrics
  • Abstract views:  5419
  • PDF Downloads:  88
  • Cited By: 0
Publishing process
  • Received Date:  08 March 2021
  • Accepted Date:  15 April 2021
  • Available Online:  07 June 2021
  • Published Online:  20 August 2021

/

返回文章
返回
Baidu
map