-
Metasurface can precisely control degrees of freedom of the phase, polarization, and amplitude of the incident light field. It provides a new way to develop the next generation of the experimental platform of quantum-state manipulation on-chip, which has important application prospects. This paper proposes a new type of metasurface structure, that is, a metalens composed of silicon grating elements with different duty ratios that can form a focusing ring on the focal plane. The intensity distribution of the ring light field in the focal plane and the focusing characteristics of metalens with different numerical apertures are studied. An optical storage ring of magnesium fluoride (MgF) molecule is constructed by using this kind of metalens focusing ring. The optical potential and dipole force of the MgF molecule in the focused light field are calculated, and the dynamic process of MgF molecule motion in the storage ring is simulated by the Monte-Carlo method. The research results show that for the incident light of 1064-nm radially polarized light, the designed metasurface structure has good focusing characteristics, and the light field intensity of the focusing ring is 55.1 times stronger than that of the incident light. The focal length of the annular light field is 22 μm and the full width at half maximum of the light intensity distribution in the focal plane is 0.8 μm, and the numerical aperture of the hyperlens is 0.69. The maximum dipole potential of MgF molecules in the light field is 32 μK, which can realize the loading of MgF molecules and trap them in the surface storage ring.
-
Keywords:
- metasurface /
- metalens /
- optical trapping /
- grating
[1] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 123009
[2] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar
[3] Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar
[4] Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 1
[5] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar
[6] Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H 2017 Nat. Commun. 8 1Google Scholar
[7] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H 2018 Nat. Nanotech. 13 227Google Scholar
[8] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nature Nanotech. 13 220Google Scholar
[9] 王漱明, 李涛, 祝世宁 2018 物理 47 379Google Scholar
Wang S M, Li T, Zhu S N 2018 Phsics 47 379Google Scholar
[10] 肖行健, 祝世宁, 李涛 2020 红外与激光工程 49 61
Xing X J, Zhu S N, Li T 2020 Infrared Laser Eng. 49 61
[11] 欧凯, 郁菲茏, 陈金, 李冠海, 陈效双 2021 红外与激光工程 50 24
Ou K, Yu F L, Chen J, Li G H, Chen X S 2021 Infrared Laser Eng. 50 24
[12] 莫昊燃, 纪子韬, 郑义栋, 梁文耀, 虞华康, 李志远 2021 红外与激光工程 50 40
Mo H R, Ji Z T, Zheng Y D, Liang W Y, Yu H K, Li Z Y 2021 Infrared Laser Eng. 50 40
[13] Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar
[14] Hinds E, Hughes I 1999 J. Phys. D Appl. Phys. 32 R119Google Scholar
[15] Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom Mol. Opt. Phy. 48 263
[16] Kitching J 2018 Phys. Rev. Appl. 5 031302Google Scholar
[17] Nshii C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E, Ironside C N, See P, Sinclair A, Riis E, Arnold A S 2013 Nat. Nanotech. 8 321Google Scholar
[18] Imhof E, Stuhl B K, Kasch B, Kroese B, Olson S E, Squires M B 2017 Phys. Rev. A 96 033636Google Scholar
[19] McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 1Google Scholar
[20] Zhu L, Liu X, Sain B, Wang M, Schlickriede C, Tang Y, Deng J, Li K, Yang J, Holynski M, Zhang S, Zentgraf T, Bongs K, Lien Y-H, Li G 2020 Sci. Adv. 6 eabb6667Google Scholar
[21] Barker D, Norrgard E, Klimov N, Fedchak J, Scherschligt J, Eckel S 2019 Phys. Rev. Appl. 11 064023Google Scholar
[22] Elvin R, Hoth G W, Wright M, Lewis B, McGilligan J P, Arnold A S, Griffin P F, Riis E 2019 Opt. Express 27 38359Google Scholar
[23] Cai W, Yu H, Xu S, Xia M, Li T, Yin Y, Xia Y, Yin J 2018 J. Opt. Soc. Am. B 35 3049Google Scholar
[24] Yu H, Mao Z, Li J, Ye Y, Yin Y, Xia Y, Yin J 2020 J. Opt. 2 2
[25] Crompvoets F M, Bethlem H L, Jongma R T, Meijer G 2001 Nature 411 174Google Scholar
[26] Van der Poel A P, Dulitz K, Softley T P, Bethlem H L 2015 New J. Phys. 17 055012Google Scholar
[27] Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. 14 890Google Scholar
[28] Yan K, Wei B, Yin Y, Xu S, Xu L, Xia M, Gu R, Xia Y, Yin J 2020 New J. Phys. 22 033003Google Scholar
-
图 1 (a)单元结构的示意图, Si柱宽度为W, 高度为H, SiO2基底的在周期为P; (b)和(c)分别表示扫描单元衬底周期和占空比得到的相位、透射率二维图; (d)当P = 380 nm时, 相位和透射率分别与占空比之间的关系, 黑色实线为透射率曲线, 红色实线为相位变化曲线
Figure 1. (a) Schematic diagram of the unit structure, the width of the Si column is W, the height is H, and the period of the SiO2 substrate is P; (b) and (c) represent the two-dimensional diagram of the phase and transmittance obtained by scanning the period and duty cycle of the unit structure, respectively; (d) when P = 380 nm, the dependence of the phase and transmittance on the duty cycle, respectively, the black solid line is the transmittance curve, and the red solid line is the phase change curve.
图 2 超表面环形透镜设计原理图 (a)超表面环形光场形成的原理图; (b)半径方向截面光栅排布结构示意图; (c)当焦距f = 22 μm时, 对应的相位分布图, 红色实线为所需相位曲线, 蓝色原点为单元结构实际所需的分立相位值
Figure 2. Design principle diagram of the metasurface ring lens: (a) Principle diagram of the formation of the ring light field; (b) layout structure diagram of the cross section of the half grating; (c) corresponding phase distribution for f = 22 μm, the red solid line is the required phase curve, and the blue dot is the discrete phase value required by the unit structure.
图 7 单个MgF分子在表面储存环中运动运动轨迹图, 其中红色虚线为分子在储存环中运动的俯视图, 也就是运动轨迹在xoy平面的投影
Figure 7. Motion trajectory of a single MgF molecule in the surface storage ring, in which the red dotted line is the top view of the motion of the molecule in the storage ring, that is, the projection of the motion trajectory on the xoy plane.
-
[1] Kildishev A V, Boltasseva A, Shalaev V M 2013 Science 339 123009
[2] Genevet P, Capasso F, Aieta F, Khorasaninejad M, Devlin R 2017 Optica 4 139Google Scholar
[3] Chen W T, Zhu A Y, Capasso F 2020 Nat. Rev. Mater. 5 604Google Scholar
[4] Arbabi A, Arbabi E, Kamali S M, Horie Y, Han S, Faraon A 2016 Nat. Commun. 7 1
[5] Khorasaninejad M, Chen W T, Devlin R C, Oh J, Zhu A Y, Capasso F 2016 Science 352 1190Google Scholar
[6] Wang S, Wu P C, Su V C, Lai Y C, Chu C H, Chen J W, Lu S H, Chen J, Xu B, Kuan C H 2017 Nat. Commun. 8 1Google Scholar
[7] Wang S, Wu P C, Su V C, Lai Y C, Chen M K, Kuo H Y, Chen B H, Chen Y H, Huang T T, Wang J H 2018 Nat. Nanotech. 13 227Google Scholar
[8] Chen W T, Zhu A Y, Sanjeev V, Khorasaninejad M, Shi Z, Lee E, Capasso F 2018 Nature Nanotech. 13 220Google Scholar
[9] 王漱明, 李涛, 祝世宁 2018 物理 47 379Google Scholar
Wang S M, Li T, Zhu S N 2018 Phsics 47 379Google Scholar
[10] 肖行健, 祝世宁, 李涛 2020 红外与激光工程 49 61
Xing X J, Zhu S N, Li T 2020 Infrared Laser Eng. 49 61
[11] 欧凯, 郁菲茏, 陈金, 李冠海, 陈效双 2021 红外与激光工程 50 24
Ou K, Yu F L, Chen J, Li G H, Chen X S 2021 Infrared Laser Eng. 50 24
[12] 莫昊燃, 纪子韬, 郑义栋, 梁文耀, 虞华康, 李志远 2021 红外与激光工程 50 40
Mo H R, Ji Z T, Zheng Y D, Liang W Y, Yu H K, Li Z Y 2021 Infrared Laser Eng. 50 40
[13] Reichel J, Hänsel W, Hänsch T 1999 Phys. Rev. Lett. 83 3398Google Scholar
[14] Hinds E, Hughes I 1999 J. Phys. D Appl. Phys. 32 R119Google Scholar
[15] Folman R, Krüger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. Atom Mol. Opt. Phy. 48 263
[16] Kitching J 2018 Phys. Rev. Appl. 5 031302Google Scholar
[17] Nshii C, Vangeleyn M, Cotter J P, Griffin P F, Hinds E, Ironside C N, See P, Sinclair A, Riis E, Arnold A S 2013 Nat. Nanotech. 8 321Google Scholar
[18] Imhof E, Stuhl B K, Kasch B, Kroese B, Olson S E, Squires M B 2017 Phys. Rev. A 96 033636Google Scholar
[19] McGilligan J P, Griffin P F, Elvin R, Ingleby S J, Riis E, Arnold A S 2017 Sci. Rep. 7 1Google Scholar
[20] Zhu L, Liu X, Sain B, Wang M, Schlickriede C, Tang Y, Deng J, Li K, Yang J, Holynski M, Zhang S, Zentgraf T, Bongs K, Lien Y-H, Li G 2020 Sci. Adv. 6 eabb6667Google Scholar
[21] Barker D, Norrgard E, Klimov N, Fedchak J, Scherschligt J, Eckel S 2019 Phys. Rev. Appl. 11 064023Google Scholar
[22] Elvin R, Hoth G W, Wright M, Lewis B, McGilligan J P, Arnold A S, Griffin P F, Riis E 2019 Opt. Express 27 38359Google Scholar
[23] Cai W, Yu H, Xu S, Xia M, Li T, Yin Y, Xia Y, Yin J 2018 J. Opt. Soc. Am. B 35 3049Google Scholar
[24] Yu H, Mao Z, Li J, Ye Y, Yin Y, Xia Y, Yin J 2020 J. Opt. 2 2
[25] Crompvoets F M, Bethlem H L, Jongma R T, Meijer G 2001 Nature 411 174Google Scholar
[26] Van der Poel A P, Dulitz K, Softley T P, Bethlem H L 2015 New J. Phys. 17 055012Google Scholar
[27] Anderegg L, Augenbraun B L, Bao Y, Burchesky S, Cheuk L W, Ketterle W, Doyle J M 2018 Nat. Phys. 14 890Google Scholar
[28] Yan K, Wei B, Yin Y, Xu S, Xu L, Xia M, Gu R, Xia Y, Yin J 2020 New J. Phys. 22 033003Google Scholar
Catalog
Metrics
- Abstract views: 5419
- PDF Downloads: 88
- Cited By: 0