搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究

张元磊 李哲 徐坤 敬超

引用本文:
Citation:

哈斯勒合金Ni-Fe-Mn-In的马氏体相变与磁特性研究

张元磊, 李哲, 徐坤, 敬超

Martensitic transformation and magnetic features in Ni-Fe-Mn-In Heusler alloy

Zhang Yuan-Lei, Li Zhe, Xu Kun, Jing Chao
PDF
导出引用
  • 利用电弧炉制备了Ni50-xFexMn37In13(x=1, 3, 5) 多晶样品, 通过结构和磁性测量, 系统分析了Ni50-xFexMn37In13(x=1, 3, 5)样品的晶体结构和马氏体相变. 结果表明, 三样品在室温下呈现出了不同的晶体结构. 同时, 随着Fe含量的增加, 样品的马氏体相变温度急剧下降, 而铁磁性却逐渐增强. 研究了Fe3和Fe5样品在反马氏体相变过程中的磁电阻和磁卡效应. 在外加3 T的磁场下, 两样品在反马氏体相变区域所表现出的磁电阻效应分别约为-46%和-15%, 而等温熵变则约为6 J·kg-1·K-1和9.5 J·kg-1·K-1. 然而, 伴随非常宽的相变温跨和较小的磁滞损失, Fe3样品在反马氏体相变区域的净制冷量达到96 J·kg-1.
    The Ni50-xFexMn37In13(x=1, 3, 5) polycrystalline samples are prepared by arc melting method. The martensitic transformations and crystal structures for Ni50-xFexMn37In13(x=1, 3, 5) samples are systematically analyzed by measuring the structure and magnetism. The results show that the three samples present different structures at room temperature. In the mean time, with the increase of the content of Fe, the martensitic transformation temperature rapidly decreases, while the ferromagnetism is gradually enhanced for these alloys. Furthermore, both the magnetoresistance and the magnetocaloric effect are also investigated in Fe3 and Fe5 alloys. For an applied magnetic field of 3 T, it is found that the magnetoresistance effects of two samples are about -46% and -15%, while their isothermal entropy changes are about 6 J·kg-1 and 9.5 J·kg-1·K-1 during reverse martensitic transformation, respectively. Accompanied with the disappearing of a very wide transforming range and a slight magnetic hysteresis loss, the net refrigerating capacity of Fe3 sample reaches 96 J·kg-1 in the process of reverse martensitic transformation.
    • 基金项目: 国家自然科学基金(批准号: 11364035, 11404186, 51371111)、上海市科委基础研究重点计划(批准号: 13JC1402400)、云南省科技厅应用基础研究面上项目(批准号: 2013FZ110)和曲靖师范学院创新团队研究计划(批准号: TD201301)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11364035, 11404186, 51371111), the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality, China (Grant No. 13JC1402400), Applied Basic Research Programs of Yunnan Province, China (Grant No. 2013FZ110), and Innovative Research Team of Qujing Normal University, China (Grant No. TD201301).
    [1]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [2]

    Planes A, Mañosa L, Acet M 2009 J. Phys. : Condens. Matter 21 233201

    [3]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506

    [4]

    Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505

    [5]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510

    [6]

    Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505

    [7]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203

    [8]

    Liao P, Jing C, Wang X L, Yang Y J, Zheng D, Li Z, Kang B J, Deng D M, Cao S X, Zhang J C, Lu B 2014 Appl. Phys. Lett. 104 092410

    [9]

    Chatterjee S, Giri S, De S K, Majumdar S 2009 Phys. Rev. B 79 092401

    [10]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [11]

    Lakhani A, Banerjee A, Chaddah P, Chen X, Ramanujan R V 2012 J. Phys. : Condens. Matter 24 386004

    [12]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [13]

    Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 88 132505

    [14]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K 2006 Nature 439 957

    [15]

    Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C 2010 J. Appl. Phys. 108 113908

    [16]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [17]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [18]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 57 3780]

    [19]

    Li Z, Jing C, Zhang H L, Cao S X, Zhang J C 2011 Chin. Phys. B 20 047502

    [20]

    Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 90 242501

    [21]

    Jing C, Yang Y J, Li Z, Yu D H, Wang X L, Kang B J, Cao S X, Zhang J C, Zhu J, Lu B 2013 J. Appl. Phys. 113 173902

    [22]

    Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R 2010 Appl. Phys. Lett. 97 242512

    [23]

    Wu Z, Liu Z, Yang H, Liu Y, Wu G 2011 Appl. Phys. Lett. 98 061904

    [24]

    Cong D Y, Roth S, Schultz L 2012 Acta Mater. 60 5335

    [25]

    Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J 2013 J. Appl. Phys. 114 063907

    [26]

    Chernenko V A 1999 Scripta Mater. 40 523

    [27]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [28]

    Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403

    [29]

    Stager C V, Campbell C C M 1978 Can. J. Phys. 56 674

    [30]

    Liu Z H, Wu Z G, Ma X Q, Wang W H, Liu Y, Wu G H 2011 J. Appl. Phys. 110 013916

    [31]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B 2007 Phys. Rev. B 75 104414

  • [1]

    Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358

    [2]

    Planes A, Mañosa L, Acet M 2009 J. Phys. : Condens. Matter 21 233201

    [3]

    Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506

    [4]

    Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505

    [5]

    Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510

    [6]

    Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505

    [7]

    Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203

    [8]

    Liao P, Jing C, Wang X L, Yang Y J, Zheng D, Li Z, Kang B J, Deng D M, Cao S X, Zhang J C, Lu B 2014 Appl. Phys. Lett. 104 092410

    [9]

    Chatterjee S, Giri S, De S K, Majumdar S 2009 Phys. Rev. B 79 092401

    [10]

    Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507

    [11]

    Lakhani A, Banerjee A, Chaddah P, Chen X, Ramanujan R V 2012 J. Phys. : Condens. Matter 24 386004

    [12]

    Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507

    [13]

    Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 88 132505

    [14]

    Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K 2006 Nature 439 957

    [15]

    Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C 2010 J. Appl. Phys. 108 113908

    [16]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450

    [17]

    Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620

    [18]

    Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 57 3780]

    [19]

    Li Z, Jing C, Zhang H L, Cao S X, Zhang J C 2011 Chin. Phys. B 20 047502

    [20]

    Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 90 242501

    [21]

    Jing C, Yang Y J, Li Z, Yu D H, Wang X L, Kang B J, Cao S X, Zhang J C, Zhu J, Lu B 2013 J. Appl. Phys. 113 173902

    [22]

    Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R 2010 Appl. Phys. Lett. 97 242512

    [23]

    Wu Z, Liu Z, Yang H, Liu Y, Wu G 2011 Appl. Phys. Lett. 98 061904

    [24]

    Cong D Y, Roth S, Schultz L 2012 Acta Mater. 60 5335

    [25]

    Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J 2013 J. Appl. Phys. 114 063907

    [26]

    Chernenko V A 1999 Scripta Mater. 40 523

    [27]

    Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401

    [28]

    Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403

    [29]

    Stager C V, Campbell C C M 1978 Can. J. Phys. 56 674

    [30]

    Liu Z H, Wu Z G, Ma X Q, Wang W H, Liu Y, Wu G H 2011 J. Appl. Phys. 110 013916

    [31]

    Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B 2007 Phys. Rev. B 75 104414

  • [1] 金淼, 白静, 徐佳鑫, 姜鑫珺, 章羽, 刘新, 赵骧, 左良. Fe掺杂对Ni-Mn-Ti全d族Heusler合金马氏体相变和磁性能影响的研究.  , 2023, 72(4): 046301. doi: 10.7498/aps.72.20222037
    [2] 孙凯晨, 刘爽, 高瑞瑞, 时翔宇, 刘何燕, 罗鸿志. Zn掺杂对Heusler型磁性形状记忆合金Ni2FeGa1–xZnx (x = 0—1)电子结构、磁性与马氏体相变影响的第一性原理研究.  , 2021, 70(13): 137101. doi: 10.7498/aps.70.20202179
    [3] 芦佳, 甘渝林, 颜雷, 丁洪. EuS/Ta异质结的极大磁电阻效应.  , 2021, 70(4): 047401. doi: 10.7498/aps.70.20201213
    [4] Algethami Obaidallah A, 李歌天, 柳祝红, 马星桥. Heusler合金Mn50–xCrxNi42Sn8的相变、磁性与交换偏置效应.  , 2020, 69(5): 058102. doi: 10.7498/aps.69.20191551
    [5] 申建雷, 李萌萌, 赵瑞斌, 李国科, 马丽, 甄聪棉, 候登录. Ni-Mn杂化对Mn50Ni41-xSn9Cux合金中马氏体相变温度和马氏体相磁性的影响.  , 2016, 65(24): 247501. doi: 10.7498/aps.65.247501
    [6] 马蕾, 王旭, 尚家香. Pd掺杂对NiTi合金马氏体相变和热滞影响的第一性原理研究.  , 2014, 63(23): 233103. doi: 10.7498/aps.63.233103
    [7] 闫君, 孙莹, 王聪, 史再兴, 邓司浩, 史可文, 卢会清. Co掺杂对Mn3Sn1-xCoxC1.1化合物的磁性质、熵变以及磁卡效应的影响.  , 2014, 63(16): 167502. doi: 10.7498/aps.63.167502
    [8] 张玉洁, 刘恩克, 张红国, 李贵江, 陈京兰, 王文洪, 吴光恒. 替代掺杂的MnNiGe1-xGax合金中马氏体相变和磁-结构耦合特性.  , 2013, 62(19): 197501. doi: 10.7498/aps.62.197501
    [9] 罗礼进, 仲崇贵, 董正超, 方靖淮, 周朋霞, 江学范. Heusler合金Mn2NiGe马氏体相变的带Jahn-Teller效应研究.  , 2012, 61(20): 207503. doi: 10.7498/aps.61.207503
    [10] 胡妮, 刘雍, 程莉, 石兢, 熊锐. La0.4Ca0.6MnO3系统中Mn位Fe和Cr掺杂效应的比较性研究.  , 2011, 60(1): 017503. doi: 10.7498/aps.60.017503
    [11] 罗礼进, 仲崇贵, 全宏瑞, 谭志中, 蒋青, 江学范. Heusler合金Mn2NiGe磁性形状记忆效应的第一性原理预测.  , 2010, 59(11): 8037-8041. doi: 10.7498/aps.59.8037
    [12] 张浩雷, 李哲, 乔燕飞, 曹世勋, 张金仓, 敬超. 哈斯勒合金Ni-Co-Mn-Sn的马氏体相变及其磁热效应研究.  , 2009, 58(11): 7857-7863. doi: 10.7498/aps.58.7857
    [13] 王清周, 陆东梅, 崔春翔, 韩福生. 利用内耗研究淬火空位对Cu-11.9Al-2.5Mn(wt%)形状记忆合金逆马氏体相变温度的影响.  , 2008, 57(11): 7083-7087. doi: 10.7498/aps.57.7083
    [14] 敬 超, 李 哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓. 哈斯勒合金Ni-Mn-Sn的马氏体相变与反磁热性质.  , 2008, 57(6): 3780-3785. doi: 10.7498/aps.57.3780
    [15] 敬 超, 陈继萍, 李 哲, 曹世勋, 张金仓. 哈斯勒合金Ni50Mn35In15的马氏体相变及其磁热效应.  , 2008, 57(7): 4450-4455. doi: 10.7498/aps.57.4450
    [16] 代学芳, 刘何燕, 闫丽琴, 曲静萍, 李养贤, 陈京兰, 吴光恒. CoNiZ系列合金的结构和马氏体相变性质.  , 2006, 55(5): 2534-2538. doi: 10.7498/aps.55.2534
    [17] 都有为, 王志明, 倪刚, 邢定钰, 徐庆宇. 高度取向石墨的巨磁电阻效应.  , 2004, 53(4): 1191-1194. doi: 10.7498/aps.53.1191
    [18] 王文洪, 柳祝红, 陈京兰, 吴光恒, 梁婷, 徐惠彬, 蔡伟, 郑玉峰, 赵连城. 铁磁形状记忆合金Ni52.5Mn23.5Ga24马氏体相变热滞后的研究.  , 2002, 51(3): 635-639. doi: 10.7498/aps.51.635
    [19] 高淑侠, 王文洪, 柳祝红, 陈京兰, 吴光恒, 梁婷, 徐惠彬, 蔡伟, 郑玉峰, 赵连城. 铁磁形状记忆合金Ni52.2Mn23.8Ga24的马氏体相变及其物理表征.  , 2002, 51(2): 332-336. doi: 10.7498/aps.51.332
    [20] 柳祝红, 胡凤霞, 王文洪, 陈京兰, 吴光恒, 高书侠, 敖玲. 哈斯勒合金Ni-Mn-Ga的马氏体相变和磁增强双向形状记忆效应.  , 2001, 50(2): 233-238. doi: 10.7498/aps.50.233
计量
  • 文章访问数:  6670
  • PDF下载量:  5772
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-26
  • 修回日期:  2014-09-25
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map