-
利用电弧炉制备了Ni50-xFexMn37In13(x=1, 3, 5) 多晶样品, 通过结构和磁性测量, 系统分析了Ni50-xFexMn37In13(x=1, 3, 5)样品的晶体结构和马氏体相变. 结果表明, 三样品在室温下呈现出了不同的晶体结构. 同时, 随着Fe含量的增加, 样品的马氏体相变温度急剧下降, 而铁磁性却逐渐增强. 研究了Fe3和Fe5样品在反马氏体相变过程中的磁电阻和磁卡效应. 在外加3 T的磁场下, 两样品在反马氏体相变区域所表现出的磁电阻效应分别约为-46%和-15%, 而等温熵变则约为6 J·kg-1·K-1和9.5 J·kg-1·K-1. 然而, 伴随非常宽的相变温跨和较小的磁滞损失, Fe3样品在反马氏体相变区域的净制冷量达到96 J·kg-1.The Ni50-xFexMn37In13(x=1, 3, 5) polycrystalline samples are prepared by arc melting method. The martensitic transformations and crystal structures for Ni50-xFexMn37In13(x=1, 3, 5) samples are systematically analyzed by measuring the structure and magnetism. The results show that the three samples present different structures at room temperature. In the mean time, with the increase of the content of Fe, the martensitic transformation temperature rapidly decreases, while the ferromagnetism is gradually enhanced for these alloys. Furthermore, both the magnetoresistance and the magnetocaloric effect are also investigated in Fe3 and Fe5 alloys. For an applied magnetic field of 3 T, it is found that the magnetoresistance effects of two samples are about -46% and -15%, while their isothermal entropy changes are about 6 J·kg-1 and 9.5 J·kg-1·K-1 during reverse martensitic transformation, respectively. Accompanied with the disappearing of a very wide transforming range and a slight magnetic hysteresis loss, the net refrigerating capacity of Fe3 sample reaches 96 J·kg-1 in the process of reverse martensitic transformation.
-
Keywords:
- Heusler alloy /
- martensitic transformation /
- magnetoresistance effect /
- magnetocaloric effect
[1] Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358
[2] Planes A, Mañosa L, Acet M 2009 J. Phys. : Condens. Matter 21 233201
[3] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506
[4] Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505
[5] Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510
[6] Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505
[7] Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203
[8] Liao P, Jing C, Wang X L, Yang Y J, Zheng D, Li Z, Kang B J, Deng D M, Cao S X, Zhang J C, Lu B 2014 Appl. Phys. Lett. 104 092410
[9] Chatterjee S, Giri S, De S K, Majumdar S 2009 Phys. Rev. B 79 092401
[10] Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507
[11] Lakhani A, Banerjee A, Chaddah P, Chen X, Ramanujan R V 2012 J. Phys. : Condens. Matter 24 386004
[12] Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507
[13] Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 88 132505
[14] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K 2006 Nature 439 957
[15] Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C 2010 J. Appl. Phys. 108 113908
[16] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450
[17] Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620
[18] Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 57 3780]
[19] Li Z, Jing C, Zhang H L, Cao S X, Zhang J C 2011 Chin. Phys. B 20 047502
[20] Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 90 242501
[21] Jing C, Yang Y J, Li Z, Yu D H, Wang X L, Kang B J, Cao S X, Zhang J C, Zhu J, Lu B 2013 J. Appl. Phys. 113 173902
[22] Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R 2010 Appl. Phys. Lett. 97 242512
[23] Wu Z, Liu Z, Yang H, Liu Y, Wu G 2011 Appl. Phys. Lett. 98 061904
[24] Cong D Y, Roth S, Schultz L 2012 Acta Mater. 60 5335
[25] Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J 2013 J. Appl. Phys. 114 063907
[26] Chernenko V A 1999 Scripta Mater. 40 523
[27] Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401
[28] Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403
[29] Stager C V, Campbell C C M 1978 Can. J. Phys. 56 674
[30] Liu Z H, Wu Z G, Ma X Q, Wang W H, Liu Y, Wu G H 2011 J. Appl. Phys. 110 013916
[31] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B 2007 Phys. Rev. B 75 104414
-
[1] Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K 2004 Appl. Phys. Lett. 85 4358
[2] Planes A, Mañosa L, Acet M 2009 J. Phys. : Condens. Matter 21 233201
[3] Wang D H, Han Z D, Xuan H C, Ma S C, Chen S Y, Zhang C L, Du Y W 2013 Chin. Phys. B 22 077506
[4] Hu F X, Shen B G, Sun J R 2013 Chin. Phys. B 22 037505
[5] Khan M, Dubenko I, Stadler S, Ali N 2007 Appl. Phys. Lett. 91 072510
[6] Li Z, Jing C, Chen J P, Yuan S J, Cao S X, Zhang J C 2007 Appl. Phys. Lett. 91 112505
[7] Wang B M, Liu Y, Ren P, Xia B, Ruan K B, Yi J B, Ding J, Li X G, Wang L 2011 Phys. Rev. Lett. 106 077203
[8] Liao P, Jing C, Wang X L, Yang Y J, Zheng D, Li Z, Kang B J, Deng D M, Cao S X, Zhang J C, Lu B 2014 Appl. Phys. Lett. 104 092410
[9] Chatterjee S, Giri S, De S K, Majumdar S 2009 Phys. Rev. B 79 092401
[10] Ma L, Wang W H, Lu J B, Li J Q, Zhen C M, Hou D L, Wu G H 2011 Appl. Phys. Lett. 99 182507
[11] Lakhani A, Banerjee A, Chaddah P, Chen X, Ramanujan R V 2012 J. Phys. : Condens. Matter 24 386004
[12] Oikawa K, Ito W, Imano Y, Sutou Y, Kainuma R, Ishida K, Okamoto S, Kitakami O, Kanomata T 2006 Appl. Phys. Lett. 88 122507
[13] Koyama K, Watanabe K, Kanomata T, Kaimuma R, Oikawa K, Ishida K 2006 Appl. Phys. Lett. 88 132505
[14] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomota T, Ishida K 2006 Nature 439 957
[15] Li Z, Jing C, Zhang H L, Yu D H, Chen L, Kang B J, Cao S X, Zhang J C 2010 J. Appl. Phys. 108 113908
[16] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A 2005 Nat. Mater. 4 450
[17] Liu J, Gottschall T, Skokov K P, Moore J D, Gutfleisch O 2012 Nat. Mater. 11 620
[18] Jing C, Li Z, Chen J P, Lu Y M, Cao S X, Zhang J C 2008 Acta Phys. Sin. 57 3780 (in Chinese) [敬超, 李哲, 陈继萍, 鲁玉明, 曹世勋, 张金仓 2008 57 3780]
[19] Li Z, Jing C, Zhang H L, Cao S X, Zhang J C 2011 Chin. Phys. B 20 047502
[20] Yu S Y, Ma L, Liu G D, Liu Z H, Chen J L, Cao Z X, Wu G H, Zhang B, Zhang X X 2007 Appl. Phys. Lett. 90 242501
[21] Jing C, Yang Y J, Li Z, Yu D H, Wang X L, Kang B J, Cao S X, Zhang J C, Zhu J, Lu B 2013 J. Appl. Phys. 113 173902
[22] Ito W, Xu X, Umetsu R, Kanomata T, Ishida K, Kainuma R 2010 Appl. Phys. Lett. 97 242512
[23] Wu Z, Liu Z, Yang H, Liu Y, Wu G 2011 Appl. Phys. Lett. 98 061904
[24] Cong D Y, Roth S, Schultz L 2012 Acta Mater. 60 5335
[25] Jing C, Wang X L, Liao P, Li Z, Yang Y J, Kang B J, Deng D M, Cao S X, Zhang J C, Zhu J 2013 J. Appl. Phys. 114 063907
[26] Chernenko V A 1999 Scripta Mater. 40 523
[27] Ye M, Kimura A, Miura Y, Shirai M, Cui Y T, Shimada K, Namatame H, Taniguchi M, Ueda S, Kobayashi K, Kainuma R, Shishido T, Fukushima K, Kanomata T 2010 Phys. Rev. Lett. 104 176401
[28] Khan M, Jung J, Stoyko S S, Mar A, Quetz A, Samanta T, Dubenko I, Ali N, Stadler S, Chow K H 2012 Appl. Phys. Lett. 100 172403
[29] Stager C V, Campbell C C M 1978 Can. J. Phys. 56 674
[30] Liu Z H, Wu Z G, Ma X Q, Wang W H, Liu Y, Wu G H 2011 J. Appl. Phys. 110 013916
[31] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L, Planes A, Suard E, Ouladdiaf B 2007 Phys. Rev. B 75 104414
计量
- 文章访问数: 6670
- PDF下载量: 5772
- 被引次数: 0