-
采用KKR-CPA-LDA方法研究了不同混乱占位时Fe2CrGa合金基态的电子结构和磁结构. 基态能量表明Fe2CrGa合金更倾向于形成Hg2CuTi型有序结构,而不是L21结构. 能态密度(DOS)分析进一步揭示受晶体场影响的磁性原子内部交换作用是使Fe2CrGa合金形成 Hg2CuTi型有序结构的主要原因.测量了不同热处理所得Fe2CrGa合金的居里温度和分子磁矩, 发现原子占位有序化可以在137K温度范围内调控合金的居里温度.分子磁矩随有序化占位也有相应变化, 分布在2.28B/f.u.2.48B/f.u.之间.理论计算和实验对比可证明Fe2CrGa合金是Hg2CuTi型Heusler合金.The KKR-CPA-LDA method was used to calculate the electronic and the magnetic structures of Fe2CrGa alloy. The results indicate that Fe2CrGa alloy prefers to crystallize in Hg2CuTi-type structure rather than L21 one. The analysis of density of states reveals that the intra-atomic exchange splitting affected by crystal field plays an important role in forming the Hg2CuTi-type structure. The molecular magnetic moments measured experimentally are in a range of 2.282.48B/f.u., which is very close to that expected theoretically by the calculations based on the Hg2CuTi-type structure, but not based on the L21 structure. The experimental results also show that the Curie temperature of Fe2CrGa alloy can be continuously manipulated from 308K to 445K by heat-treating under the various conditions, indicating a high sensitivity of the exchange interaction to the atomic ordering in this system.
-
Keywords:
- Fe2CrGa /
- magnetic properties and structure /
- coherent potential approximation /
- Heusler alloy
[1] Webster P J 1969 Contemp. Phys. 10 559
[2] Felcher G P, Cable J W, Wilkinson M K 1963 J. Phys. Chem. Solids 24 1663
[3] Umetsu R Y, Kobayashi K, Kainuma R, Yamaguchi Y, Ohoyama K, Sakuma A, Ishida K 2010 J. Alloys and Comp. 499 1
[4] Kubler J,Williams A R, Sommers C B 1983 Phys. Rev. B 28 1745
[5] Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66
[6] Liu G D,Dai X F,Liu H Y,Chen J L,Li Y X,Xiao G,Wu G H 2008 Phys. Rev. B 77
[7] Luo H Z, Zhang HW, Chen J L,Wu G H, Dai X F, Zhu X X, Jiang C B, Xu H B 2008 Funct. Mater. Lett. 1 115
[8] Noda Y, Ishikawa Y 1976 J. Phys. Soc. Jpn. 40 699
[9] Hurd C M, Shiozaki I, McAlister S P 1982 Phys. Rev. B 26 701
[10] Deb A, Sakurai Y 2000 J. Phys.: Condens. Matter 12 2997
[11] Webster P J 1971 J. Phys. Chem. Solids 32 1221
[12] Carbonari A W, Pendl W, Attili R N, Saxena R N 1993 Hyperfine Interact. 80 971
[13] Fecher G H, Kandpal H C, Wurmehl S, Felser C, Schonhense G 2006 J. Appl. Phys. 99 08J106
[14] Kandpal H C, Felser C, Fecher G H 2007 J. Magn. Magn. Mater. 310 1626
[15] Ishikawa Y 1977 Physica B&C 91 130
[16] Burch T J, Litrenta T, Budnick J I 1974 Phys. Rev. Lett. 33 421
[17] Luo H Z, Zhu Z Y, Li M, Xu S F, Liu H Y, Qu J P,Li Y X, Wu G H 2007 J. Phy. D: Appl. Phys. 40 7121
[18] Ishida S, Mizutani S, Fujii S, Asano S 2006 Mater. Trans. 47 464
[19] Buschow K H J, Vanengen P G 1981 J. Magn. Magn. Mater. 25 90
[20] Ogura M, Akai H 2007 J. Phys.: Condens Matter 19
[21] Elliott R J, Krumhans.Ja, Leath P L 1974 Rev. Mod. Phys. 46 465
[22] Hasegawa H, Kanamori J 1971 J. Phys. Soc. Jpn 31 382
[23] Feng L, Zhu Z Y, Zhu W, Liu E K, Tang X D, Qian J F, Wu G H, Meng F B, Liu H Y, Luo H Z, Li Y X 2010 Acta Phys. Sin. 59 6575 (in Chinese) [冯琳,朱志勇,朱伟,刘恩克,唐晓丹,钱金凤,吴光恒,孟凡斌,刘何燕,罗鸿志,李养贤 2010 59 6575]
[24] Qian J F, Feng L, Zhu W, Liu E K, Tang X D, Wang W H, Wu G H, Meng F B, Liu H Y, Luo H Z 2011 Acta Phys. Sin. 60 (in Chinese)[钱金凤,冯琳,朱伟,刘恩克,唐晓丹,王文洪,吴光恒,孟凡斌,刘何燕,罗鸿志 2011 60 056402]
[25] Lakshmi N, Venugopalan K, Agarwal V K 2004 Hyperfine Interact. 156 563
[26] Cadeville M C, Moranlopez J L 1987 Phys. Rep. 153 331
[27] Ringer S P, Hono K, Polmear I J, Sakurai T 1996 Acta Mater. 44 1883
[28] Yoshimura R, Konno T J, Abe E, Hiraga K 2003 Acta Mater. 51 4251
[29] Ustinovshikov Y, Pushkarev B, Igumnov I 2002 J. Mater. Sci. 37 2031
[30] Ustinovshikov Y, Pushkarev B 2005 J. Alloys Comp. 389 95
-
[1] Webster P J 1969 Contemp. Phys. 10 559
[2] Felcher G P, Cable J W, Wilkinson M K 1963 J. Phys. Chem. Solids 24 1663
[3] Umetsu R Y, Kobayashi K, Kainuma R, Yamaguchi Y, Ohoyama K, Sakuma A, Ishida K 2010 J. Alloys and Comp. 499 1
[4] Kubler J,Williams A R, Sommers C B 1983 Phys. Rev. B 28 1745
[5] Galanakis I, Dederichs P H, Papanikolaou N 2002 Phys. Rev. B 66
[6] Liu G D,Dai X F,Liu H Y,Chen J L,Li Y X,Xiao G,Wu G H 2008 Phys. Rev. B 77
[7] Luo H Z, Zhang HW, Chen J L,Wu G H, Dai X F, Zhu X X, Jiang C B, Xu H B 2008 Funct. Mater. Lett. 1 115
[8] Noda Y, Ishikawa Y 1976 J. Phys. Soc. Jpn. 40 699
[9] Hurd C M, Shiozaki I, McAlister S P 1982 Phys. Rev. B 26 701
[10] Deb A, Sakurai Y 2000 J. Phys.: Condens. Matter 12 2997
[11] Webster P J 1971 J. Phys. Chem. Solids 32 1221
[12] Carbonari A W, Pendl W, Attili R N, Saxena R N 1993 Hyperfine Interact. 80 971
[13] Fecher G H, Kandpal H C, Wurmehl S, Felser C, Schonhense G 2006 J. Appl. Phys. 99 08J106
[14] Kandpal H C, Felser C, Fecher G H 2007 J. Magn. Magn. Mater. 310 1626
[15] Ishikawa Y 1977 Physica B&C 91 130
[16] Burch T J, Litrenta T, Budnick J I 1974 Phys. Rev. Lett. 33 421
[17] Luo H Z, Zhu Z Y, Li M, Xu S F, Liu H Y, Qu J P,Li Y X, Wu G H 2007 J. Phy. D: Appl. Phys. 40 7121
[18] Ishida S, Mizutani S, Fujii S, Asano S 2006 Mater. Trans. 47 464
[19] Buschow K H J, Vanengen P G 1981 J. Magn. Magn. Mater. 25 90
[20] Ogura M, Akai H 2007 J. Phys.: Condens Matter 19
[21] Elliott R J, Krumhans.Ja, Leath P L 1974 Rev. Mod. Phys. 46 465
[22] Hasegawa H, Kanamori J 1971 J. Phys. Soc. Jpn 31 382
[23] Feng L, Zhu Z Y, Zhu W, Liu E K, Tang X D, Qian J F, Wu G H, Meng F B, Liu H Y, Luo H Z, Li Y X 2010 Acta Phys. Sin. 59 6575 (in Chinese) [冯琳,朱志勇,朱伟,刘恩克,唐晓丹,钱金凤,吴光恒,孟凡斌,刘何燕,罗鸿志,李养贤 2010 59 6575]
[24] Qian J F, Feng L, Zhu W, Liu E K, Tang X D, Wang W H, Wu G H, Meng F B, Liu H Y, Luo H Z 2011 Acta Phys. Sin. 60 (in Chinese)[钱金凤,冯琳,朱伟,刘恩克,唐晓丹,王文洪,吴光恒,孟凡斌,刘何燕,罗鸿志 2011 60 056402]
[25] Lakshmi N, Venugopalan K, Agarwal V K 2004 Hyperfine Interact. 156 563
[26] Cadeville M C, Moranlopez J L 1987 Phys. Rep. 153 331
[27] Ringer S P, Hono K, Polmear I J, Sakurai T 1996 Acta Mater. 44 1883
[28] Yoshimura R, Konno T J, Abe E, Hiraga K 2003 Acta Mater. 51 4251
[29] Ustinovshikov Y, Pushkarev B, Igumnov I 2002 J. Mater. Sci. 37 2031
[30] Ustinovshikov Y, Pushkarev B 2005 J. Alloys Comp. 389 95
计量
- 文章访问数: 15530
- PDF下载量: 954
- 被引次数: 0