Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Design and simulation of polarization-insensitive ring resonator based on subwavelength grating and sandwiched structure

Wang Jing-Li Zhang Jian-Zhe Chen He-Ming

Citation:

Design and simulation of polarization-insensitive ring resonator based on subwavelength grating and sandwiched structure

Wang Jing-Li, Zhang Jian-Zhe, Chen He-Ming
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ring resonator fabricated on a silicon-on-insulator is versatile in optical integration, which can be used to realize filters, modulators and switches. However, silicon-on-insulator is difficult to control the polarization dependence, and thus its application is greatly limited. The polarization dependence of the ring resonator is caused mainly by two factors: the coupling coefficients of the coupling region at the same wavelength for the two orthogonal polarization modes are different, and the birefringence effect of curved waveguide results in the different resonant wavelengths of TE and TM polarization modes. When the coupling region polarization independence and the resonant wavelength polarization independence are simultaneously satisfied, the polarization independence of the ring resonator can be realized. In this paper, a new type of polarization-insensitive ring resonator on a silicon-on-insulator is designed based on subwavelength grating and sandwiched structure. Firstly, by adjusting the duty cycle of the subwavelength grating and the refractive index of SiNx in the coupling region, polarization independence of the coupling region is achieved. Secondly, the refractive index of SiNx in curved waveguides is designed to make the resonance wavelengths for orthogonal polarization modes equal. Thirdly, the parameters of the coupling region are optimized to reduce the insertion loss. The three-dimensional finite-difference time-domain method is used for simulation. The results show that the radius of the ring is only 10 μm, the 3-dB bandwidth of the device is less than 0.8 nm, and the insertion loss is lower than 0.8 dB. It has potential applications in the future dense wavelength division multiplexing systems.
      Corresponding author: Wang Jing-Li, jlwang@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61571237), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151509), and the NUPTSF of China (Grant No. NY217047)
    [1]

    Lee J M, Park S, Kim G 2008 Opt. Commun. 281 4302Google Scholar

    [2]

    Sang-Ngern S, Roeksabutr A 2006 IEEE Asia Pacific Conference on Circuits and Systems Singapore, December 4–7, 2006 p1907

    [3]

    Heyn P D, Coster J D, Verheyem P, Lepage G, Pantouvaki M, Absil P, Bogaerts W, Campenhout J V, Thourhout D V 2013 J. Lightwave Technol. 31 2785Google Scholar

    [4]

    Chao I F, Lee C H, Chung Y H 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG) Yichang, China, September 6–9, 2019 p30

    [5]

    Kudo M, Ohta S, Taguchi E, Fujisawa T, Sakamoto T, Matsui T, Tsujikawa K, Nakajima K, Saitoh K 2019 Opt. Commun. 433 168Google Scholar

    [6]

    Balaji V R, Murugan M, Robinson S 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) Chennai, India, March 23–25, 2016 p33

    [7]

    Libertino S, Coffa S, Saggio M 2000 Mater. Sci. Semicond. Process. 3 375Google Scholar

    [8]

    Vlasov Y, Mcnab S 2004 Opt. Express 12 1622Google Scholar

    [9]

    Xu Q F, Fattal D, Beausoleil R G 2008 Opt. Express 16 4309Google Scholar

    [10]

    Barwicz T, Watts M R, Popovi M A, Rakich P T, Socci L, Krtner F X, Ippen E P, Smith H I 2007 Nat. Photonics 1 57Google Scholar

    [11]

    Xu D X, Janz S, Cheben P 2006 IEEE Photonics Technol. Lett. 18 343Google Scholar

    [12]

    Geng M M 2016 Laser Optoelectron. Prog. 53 182Google Scholar

    [13]

    Wang X D, Li Y Q, Quan X L, Cheng X L 2019 Conference on Lasers and Electro-Optics (CLEO) Munich, Germany, June 23–27, 2019 JTh2 A.64

    [14]

    Chen Y, Joines W T 2003 Opt. Commun. 228 319Google Scholar

    [15]

    Kaalund C J 2004 Opt. Commun. 237 357Google Scholar

    [16]

    Little B E, Chu S T, Haus H A, Foresi J, Laine J P 1997 J. Lightwave Technol. 15 998Google Scholar

    [17]

    Lee C C, Chen H L, Hsu J C, Tien C L 1999 Appl. Opt. 38 2078Google Scholar

    [18]

    邹祥云, 苑进社, 蒋一祥 2012 61 148106Google Scholar

    Zou X Y, Yuan J S, Jiang Y X 2012 Acta Phys. Sin. 61 148106Google Scholar

    [19]

    汪静丽, 陈子玉, 陈鹤鸣 2020 69 054206Google Scholar

    Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar

    [20]

    Shi Y J, Shang H P, Sun D G 2018 Opt. Commun. 410 211Google Scholar

    [21]

    张福领, 翟珊, 潘俊, 冯吉军 2020 中国激光 43 1Google Scholar

    Zhang F L, Zhai S, Pan J, Feng J J 2020 Chin. J. Lasers 43 1Google Scholar

    [22]

    柳襄怀, 薛滨, 郑志宏, 周祖尧, 邹世昌 1989 半导体学报 1989 457Google Scholar

    Liu X H, Xue B, Zheng Z H, Zhou Z Y, Zhou S Z 1989 J. Semicond. 1989 457Google Scholar

  • 图 1  基于SWG和三明治结构的偏振无关微环谐振器结构示意图 (a) 俯视图; (b) 波导横截面示意图; (c) 基于SWG和三明治结构的耦合区三维结构示意图; (d) 耦合区Si层俯视图; (e) 耦合区SiNx层俯视图

    Figure 1.  Schematic configuration of the polarization insensitive ring resonator based on SWG and sandwiched structure: (a) Top view; (b) cross section of the waveguide; (c) three-dimensional schematic configuration of the polarization insensitive coupling region based on subwavelength grating slot waveguides and sandwiched structure; (d) top view of Si layer in coupling region; (e) top view of SiNx layer in coupling region.

    图 2  耦合区中的光场分布图 (a) TE偏振模; (b) TM偏振模

    Figure 2.  Field distributions in the coupling region: (a) TE polarization mode; (b) TM polarization mode.

    图 3  k 2W2的变化

    Figure 3.  k 2 as a function of W2.

    图 4  (a) 耦合区满足偏振无关时, 不同n1(SiNx)情况下k 2g的变化; (b) 每一组gn1(SiNx)实现耦合区偏振无关时其对应的W2

    Figure 4.  (a) k 2 as a function of g under different n1(SiNx) when the light intensity is polarization-insensitive; (b) W2 as a function of g under different n1(SiNx) when the light intensity is polarization-insensitive

    图 5  Δλn 2 (SiNx)的变化

    Figure 5.  Δλ as a function of n 2 (SiNx) in ring.

    图 6  k 2g的变化

    Figure 6.  k 2 of download port as a function of g.

    图 7  (a) k 2变化对IL的影响; (b) k 2变化对3-dB带宽的影响

    Figure 7.  (a) IL of download port as a function of k 2; (b) 3-dB bandwidth as a function of k 2.

    图 8  微环谐振器偏振无关且k 2 = 0.2时n1 (SiNx)变化对IL的影响

    Figure 8.  IL as a function of n1(SiNx) when the ring resonator is polarization-insensitive and k 2 = 0.2.

    图 9  TE和TM偏振模时的输出端透过率谱线

    Figure 9.  Measured transmission spectra with TE- and TM-polarized light inputs for the out port.

    图 10  器件性能随结构参数的变化 (a) IL随ΔW1的变化; (b) 3-dB带宽随ΔW1的变化; (c) IL随ΔW2的变化; (d) 3-dB带宽随ΔW2的变化

    Figure 10.  Performances as functions of structural parameters: (a) IL as a function of ΔW1; (b) 3-dB bandwidth as a function of ΔW1; (c) IL as a function of ΔW2; (d) 3-dB bandwidth as a function of ΔW2.

    表 1  偏振无关微环谐振器的性能参数

    Table 1.  Performances of the polarization-insensitive ring resonator.

    性能参数IL/dB微环半径/μm
    文献[11] < 3200
    文献[12] < 33.7
    文献[13] < 2200
    本文 < 0.810
    DownLoad: CSV
    Baidu
  • [1]

    Lee J M, Park S, Kim G 2008 Opt. Commun. 281 4302Google Scholar

    [2]

    Sang-Ngern S, Roeksabutr A 2006 IEEE Asia Pacific Conference on Circuits and Systems Singapore, December 4–7, 2006 p1907

    [3]

    Heyn P D, Coster J D, Verheyem P, Lepage G, Pantouvaki M, Absil P, Bogaerts W, Campenhout J V, Thourhout D V 2013 J. Lightwave Technol. 31 2785Google Scholar

    [4]

    Chao I F, Lee C H, Chung Y H 2019 4th International Conference on Intelligent Green Building and Smart Grid (IGBSG) Yichang, China, September 6–9, 2019 p30

    [5]

    Kudo M, Ohta S, Taguchi E, Fujisawa T, Sakamoto T, Matsui T, Tsujikawa K, Nakajima K, Saitoh K 2019 Opt. Commun. 433 168Google Scholar

    [6]

    Balaji V R, Murugan M, Robinson S 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) Chennai, India, March 23–25, 2016 p33

    [7]

    Libertino S, Coffa S, Saggio M 2000 Mater. Sci. Semicond. Process. 3 375Google Scholar

    [8]

    Vlasov Y, Mcnab S 2004 Opt. Express 12 1622Google Scholar

    [9]

    Xu Q F, Fattal D, Beausoleil R G 2008 Opt. Express 16 4309Google Scholar

    [10]

    Barwicz T, Watts M R, Popovi M A, Rakich P T, Socci L, Krtner F X, Ippen E P, Smith H I 2007 Nat. Photonics 1 57Google Scholar

    [11]

    Xu D X, Janz S, Cheben P 2006 IEEE Photonics Technol. Lett. 18 343Google Scholar

    [12]

    Geng M M 2016 Laser Optoelectron. Prog. 53 182Google Scholar

    [13]

    Wang X D, Li Y Q, Quan X L, Cheng X L 2019 Conference on Lasers and Electro-Optics (CLEO) Munich, Germany, June 23–27, 2019 JTh2 A.64

    [14]

    Chen Y, Joines W T 2003 Opt. Commun. 228 319Google Scholar

    [15]

    Kaalund C J 2004 Opt. Commun. 237 357Google Scholar

    [16]

    Little B E, Chu S T, Haus H A, Foresi J, Laine J P 1997 J. Lightwave Technol. 15 998Google Scholar

    [17]

    Lee C C, Chen H L, Hsu J C, Tien C L 1999 Appl. Opt. 38 2078Google Scholar

    [18]

    邹祥云, 苑进社, 蒋一祥 2012 61 148106Google Scholar

    Zou X Y, Yuan J S, Jiang Y X 2012 Acta Phys. Sin. 61 148106Google Scholar

    [19]

    汪静丽, 陈子玉, 陈鹤鸣 2020 69 054206Google Scholar

    Wang J L, Chen Z Y, Chen H M 2020 Acta Phys. Sin. 69 054206Google Scholar

    [20]

    Shi Y J, Shang H P, Sun D G 2018 Opt. Commun. 410 211Google Scholar

    [21]

    张福领, 翟珊, 潘俊, 冯吉军 2020 中国激光 43 1Google Scholar

    Zhang F L, Zhai S, Pan J, Feng J J 2020 Chin. J. Lasers 43 1Google Scholar

    [22]

    柳襄怀, 薛滨, 郑志宏, 周祖尧, 邹世昌 1989 半导体学报 1989 457Google Scholar

    Liu X H, Xue B, Zheng Z H, Zhou Z Y, Zhou S Z 1989 J. Semicond. 1989 457Google Scholar

Metrics
  • Abstract views:  6018
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  21 November 2020
  • Accepted Date:  12 January 2021
  • Available Online:  07 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回
Baidu
map