Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamic analysis of bubble in liquid cavity wrapped by viscoelastic medium

Zhang Tao-Ran Mo Run-Yang Hu Jing Chen Shi Wang Cheng-Hui Guo Jian-Zhong

Citation:

Dynamic analysis of bubble in liquid cavity wrapped by viscoelastic medium

Zhang Tao-Ran, Mo Run-Yang, Hu Jing, Chen Shi, Wang Cheng-Hui, Guo Jian-Zhong
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Ultrasonic wave with higher intensity will directly cavitate in soft tissue. It is an important issue in ultrasonic therapy that the cavitation bubbles in soft tissues are driven in the ultrasonic field. It is assumed that the medium inside the bubble is gas, the cavity is filled with the incompressible viscous liquid, and the medium surrounding the cavity is viscoelastic solid. To introduce the effect of the surrounding tissue, it is assumed that the tissue is incompressible, linear and Voigt viscoelastic solid. The motion of a cavitation bubble can be affected by many factors, such as acoustic pressure, acoustic frequency, tissue elasticity and cavity size. Numerical simulation shows that the resonance frequency and amplitude of the bubbles decrease with cavity radius decreasing. It is also shown that the amplitude of the radial motion for bubbles decreases with the increase of the tissue shear modulus and the frequency, when the ratio of bubble radius to the cavity radius is constant. The effect of the elasticity is very obvious, which reduces the amplitude greatly. The effect of elasticity will be less when the driving pressure is strong. It is found that the inertial cavitation threshold of bubble is relatively low in a range of 1–5 μm. The inertial cavitation threshold of bubble increases with the increase of shear modulus and driving frequency. The smaller the cavity radius, the higher the inertial cavitation threshold of the bubble is. This report aims to provide a firm theoretical basis for the future study of bubbles in a liquid-filled cavity surrounded by a viscoelasticity tissue.
      Corresponding author: Wang Cheng-Hui, wangld001@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974232, 11727813)
    [1]

    Coleman A J, Saunders J E, Crum A, Dyson M 1987 Ultrasound Med. Biol. 13 69Google Scholar

    [2]

    Church C C 1989 J. Acoust. Soc. Am. 86 215Google Scholar

    [3]

    Zhen X, Fowlkes B J, Edward D R, Albert M L, Charles A C 2005 J. Acoust. Soc. Am. 117 424Google Scholar

    [4]

    Adam D M, Charles A C, Alexander P D, Ling Q Y, Hitinder S G, Zhen X 2009 Ultrasound Med. Biol. 35 1982Google Scholar

    [5]

    Yu F Z 2011 World J. Clin. Oncol. 35 1982Google Scholar

    [6]

    Al-Bataineh O, Juergen J, Huber P 2012 Cancer. Treat. Rev 38 346Google Scholar

    [7]

    Pahk J P, Andrade M O d, Gélat P, Kim H, Saffari S 2019 Ultrason. Sonochem. 53 164Google Scholar

    [8]

    Xu S S, Ye D Z, Shentu Y J, Yue Y M, Wan M X, Chen H 2019 Ultrasound Med. & Biol. 45 2758Google Scholar

    [9]

    Tanasawa I, Yang W J 1970 Appl. Phys. 41 4526Google Scholar

    [10]

    Yang X M, Church C C 2005 J. Acoust. Soc. Am. 118 3595Google Scholar

    [11]

    Warnez M T, Johnsen E 2015 Phys. Fluids 27 628Google Scholar

    [12]

    Catheline S, Gennisson J L, Delon G, Fink M, Sinkus R, Abouelkaram S, Culioli J 2004 J. Acoust. Soc. Am. 116 3734Google Scholar

    [13]

    Roedder E, Bodnar R J 1980 Annu. Rev. Earth Planet. 8 263Google Scholar

    [14]

    Stroock A D, Pagay V V, Zwieniecki M A, Holbrook N M 2014 Annu. Rev. Fluid. Mech. 46 615Google Scholar

    [15]

    Schenk H J, Steppe K, Jansen S 2015 Trends. Plant. Sci. 20 199Google Scholar

    [16]

    Olivier V, Marmottant P 2012 Phys. Rev. Lett. 108 184502Google Scholar

    [17]

    Olivier V, Marmottant P 2017 J. Fluid Mech. 827 194Google Scholar

    [18]

    Wang Q X 2017 Phys. Fluids 29 072101Google Scholar

    [19]

    Yang W J, Yeh H C 1966 A.I.Ch. E. J. 12 927Google Scholar

    [20]

    Olivier V, Philippe M, Roberto G A S, Keita A, Ohl C D 2014 Soft Matter 10 1455Google Scholar

    [21]

    Church C C, Yang X M 2006 AIP Conf. Proc. 838 217Google Scholar

    [22]

    Doinikov A A, Dollet B, Marmottant P 2018 Phys. Rev. E 97 013108Google Scholar

    [23]

    Qin S P, Ferrara K W 2009 J. Acoust. Soc. Am. 128 1511Google Scholar

    [24]

    Solovchuk M A, Hwang S C, Chang H, Thiriet M, Sheu T W H 2014 Med. Phys. 41 052903Google Scholar

  • 图 1  软组织内液体腔中的气泡

    Figure 1.  Bubbles in the fluid cavity in the soft tissue.

    图 2  腔外介质弹性不同时气泡共振频率随半径比的变化

    Figure 2.  Change of bubble resonance frequency with radius ratio when the elasticity of the medium outside the cavity is different.

    图 3  不同模型下气泡振动对比图(本文、文献[21]、文献[18]和文献[22]分别为模型I, II, III和IV) (a) 忽略腔外介质密度模型I、II对比; (b) Pa = 0.5 MPa时模型I, II, III对比; (c) Pa = 0.1 GPa时模型I, IV对比

    Figure 3.  Vibration of bubbles under different models (The models of this paper, Ref. [21], Ref. [18] and Ref. [22] are called model I, II, III, IV, respectively): (a) Comparison of models I, II when ignoring the density of the medium outside the cavity; (b) Pa = 0.5 MPa, comparison of models I, II, III; (c) Pa = 0.1 GPa, comparison of models I, IV.

    图 4  腔与气泡半径比Rc0/Rb0不同时对气泡径向振动的影响

    Figure 4.  Influence of the radius ratio of cavity to bubble (Rc0/Rb0) on the bubble radial vibration.

    图 5  不同声压幅值下腔外介质弹性对气泡振动的影响 (a) Pa = 0.5 MPa, (b) Pa = 1 MPa

    Figure 5.  Influence of the elasticity of the medium outside the cavity on bubble vibration under different sound pressure amplitudes: (a) Pa = 0.5 MPa; (b) Pa = 1 MPa.

    图 6  驱动频率对气泡振动的影响

    Figure 6.  Influence of driving frequency on bubble vibration.

    图 7  惯性空化阈值随气泡初始半径的变化趋势 (a)腔内液体及腔外介质弹性对气泡惯性空化阈值的影响; (b)不同驱动频率下气泡的惯性空化阈值; (c)液体腔半径不同时气泡的惯性空化阈值

    Figure 7.  Variation trend of inertial cavitation threshold with initial bubble radius at different frequencies: (a) Influence of the elasticity of the liquid in the cavity and the medium outside the cavity on the inertial cavitation threshold of the bubble; (b) inertial cavitation threshold of bubbles under different driving frequencies; (c) inertial cavitation threshold of bubbles when the radius of the liquid cavity is different.

    Baidu
  • [1]

    Coleman A J, Saunders J E, Crum A, Dyson M 1987 Ultrasound Med. Biol. 13 69Google Scholar

    [2]

    Church C C 1989 J. Acoust. Soc. Am. 86 215Google Scholar

    [3]

    Zhen X, Fowlkes B J, Edward D R, Albert M L, Charles A C 2005 J. Acoust. Soc. Am. 117 424Google Scholar

    [4]

    Adam D M, Charles A C, Alexander P D, Ling Q Y, Hitinder S G, Zhen X 2009 Ultrasound Med. Biol. 35 1982Google Scholar

    [5]

    Yu F Z 2011 World J. Clin. Oncol. 35 1982Google Scholar

    [6]

    Al-Bataineh O, Juergen J, Huber P 2012 Cancer. Treat. Rev 38 346Google Scholar

    [7]

    Pahk J P, Andrade M O d, Gélat P, Kim H, Saffari S 2019 Ultrason. Sonochem. 53 164Google Scholar

    [8]

    Xu S S, Ye D Z, Shentu Y J, Yue Y M, Wan M X, Chen H 2019 Ultrasound Med. & Biol. 45 2758Google Scholar

    [9]

    Tanasawa I, Yang W J 1970 Appl. Phys. 41 4526Google Scholar

    [10]

    Yang X M, Church C C 2005 J. Acoust. Soc. Am. 118 3595Google Scholar

    [11]

    Warnez M T, Johnsen E 2015 Phys. Fluids 27 628Google Scholar

    [12]

    Catheline S, Gennisson J L, Delon G, Fink M, Sinkus R, Abouelkaram S, Culioli J 2004 J. Acoust. Soc. Am. 116 3734Google Scholar

    [13]

    Roedder E, Bodnar R J 1980 Annu. Rev. Earth Planet. 8 263Google Scholar

    [14]

    Stroock A D, Pagay V V, Zwieniecki M A, Holbrook N M 2014 Annu. Rev. Fluid. Mech. 46 615Google Scholar

    [15]

    Schenk H J, Steppe K, Jansen S 2015 Trends. Plant. Sci. 20 199Google Scholar

    [16]

    Olivier V, Marmottant P 2012 Phys. Rev. Lett. 108 184502Google Scholar

    [17]

    Olivier V, Marmottant P 2017 J. Fluid Mech. 827 194Google Scholar

    [18]

    Wang Q X 2017 Phys. Fluids 29 072101Google Scholar

    [19]

    Yang W J, Yeh H C 1966 A.I.Ch. E. J. 12 927Google Scholar

    [20]

    Olivier V, Philippe M, Roberto G A S, Keita A, Ohl C D 2014 Soft Matter 10 1455Google Scholar

    [21]

    Church C C, Yang X M 2006 AIP Conf. Proc. 838 217Google Scholar

    [22]

    Doinikov A A, Dollet B, Marmottant P 2018 Phys. Rev. E 97 013108Google Scholar

    [23]

    Qin S P, Ferrara K W 2009 J. Acoust. Soc. Am. 128 1511Google Scholar

    [24]

    Solovchuk M A, Hwang S C, Chang H, Thiriet M, Sheu T W H 2014 Med. Phys. 41 052903Google Scholar

Metrics
  • Abstract views:  4965
  • PDF Downloads:  72
  • Cited By: 0
Publishing process
  • Received Date:  07 November 2020
  • Accepted Date:  17 January 2021
  • Available Online:  07 June 2021
  • Published Online:  20 June 2021

/

返回文章
返回
Baidu
map